

RELAZIONE ANNUALE SUL MONITORAGGIO DELLA QUALITÁ DELLE ACQUE SUPERFICIALI IN PROVINCIA DI BELLUNO -ANNO 2011

ARPAV Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto

Dipartimento Provinciale di Belluno Servizio Sistemi Ambientali Ufficio Supporto Operativo

Via Tomea 5 32100 BELLUNO BL

Tel. +39-0437-935500 Fax.+39-0437-30340

E-mail: dapbl@arpa.veneto.it

Belluno, gennaio 2012

INDICE

PREMESSA	5
 INTRODUZIONE Inquadramento territoriale della provincia di Belluno e dei bacini (Piave e Cismon) compresi nel territorio provinciale Aspetti geomorfologici connessi con i corsi d'acqua Inquadramento ambientale (SIC, ZPS, aree protette, aree a parco ecc.) Cenni sulla zona climatica e regime pluviometrico Cenni sul trasporto solido 	5 8 11 13 15
LA RETE DI MONITORAGGIO DELLA QUALITA' AMBIENTALE 2.1 Descrizione della rete di monitoraggio ambientale delle acque superficiali 2.2 Descrizione della rete di monitoraggio delle acque di balneazione	17 17 20
3. ACQUE SUPERFICIALI FLUENTI Torrente Biois Torrente Padola Torrente Rai Torrente Sonna – T. Colmeda Torrente Tesa – T. Funes Torrente Mis Torrente Fiorentina Torrente Londo Torrente Bordina	22 23 24 25 26 27 28 29
4. ACQUE SUPERFICIALI FLUENTI DESTINATE ANCHE ALLA VITA DEI PESCI Torrente Cismon Torrente Ansiei Torrente Boite Torrente Caorame Torrente Cordevole Torrente Sarzana Torrente Maè Fiume Piave	31 32 33 34 35 36 37
5. ACQUE SUPERFICIALI FLUENTI DESTINATE ALLA PRODUZIONE DI ACQUA POTABILE Torrente Anfela Torrente Medone	41 41 41
Rio delle Salere Rio dei Frari	41 41 41

6. ACQUE SUPERFICIALI LACUSTRI	42
Lago di Alleghe	42
Lago del Corlo	43
Lago di Centro Cadore	44
Lago di Misurina	45
Lago di Santa Caterina	46
7. ACQUE SUPERFICIALI LACUSTRI DESTINATE ANCHE ALLA BALNEAZIONE	47
Lago del Mis	47
Lago di Santa Croce	48
8. LA SITUAZIONE DEI NITRATI IN PROVINCIA DI BELLUNO	49
9. CONCLUSIONI	52

PREMESSA

Con la Direttiva Europea 2000/60/CE, recepita con il Decreto Legislativo n. 152 del 3 aprile 2006 (abrogando il D.Lgs. 152/99), l'Italia ha mutato profondamente il sistema di monitoraggio e classificazione delle acque superficiali. Le reti stesse di monitoraggio sono state riviste per adeguarsi ai "corpi idrici", indicati dalla Direttiva come unità elementari, all'interno dei bacini idrografici, per la classificazione dello stato e per l'implementazione delle misure di protezione, miglioramento e risanamento. Nel Decreto vengono specificati, per le varie tipologie di acque superficiali, i nuovi "elementi qualitativi per la classificazione dello stato ecologico" e vengono fornite "definizioni normative per la classificazione dello stato ecologico elevato, buono e sufficiente" privilegiando gli elementi biologici e introducendo gli elementi idromorfologici.

Il percorso di implementazione della Direttiva è tuttavia lungo e complesso ed è attualmente in corso.

In particolare, le prescrizioni attuative per la classificazione dei corpi idrici superficiali secondo la Direttiva sono state emanate nel finire dello scorso anno con il Decreto Ministeriale n. 260 del 8 novembre 2010, che integra e modifica il D.Lgs. 152/06. In tale quadro, al momento, la classificazione delle acque superficiali, attinge sia dalla vecchia normativa (D.Lgs. 152/99) che dalla nuova (D.Lgs. 152/06), utilizzando la prima, laddove quest'ultima non risulti ancora completamente applicabile.

1. INTRODUZIONE

Questa relazione annuale è stata redatta sulla base dei dati rilevati nell'anno 2010 dalla rete di monitoraggio delle acque superficiali della provincia di Belluno, primo anno del piano triennale 2010-2012 di monitoraggio ai sensi della Direttiva 2000/60/CE.

Vengono presentati i risultati relativi all'anno 2010 del Livello di Inquinamento espresso dai Macrodescrittori (LIM) per i corsi d'acqua e dello Stato Ecologico dei Laghi (SEL), sia sotto forma di tabella che di mappa, con riferimento alla metodologia del D.Lgs. 152/99.

Infatti i risultati relativi al Livello di Inquinamento espresso dai Macrodescrittori (LIM) sono elaborati secondo i criteri del D.Lgs 152/99. Nella classificazione dei corpi idrici per il 2010 (come anche per il 2009 – si veda rapporto 2009) non sono stati più considerati lo stato ecologico (SECA) e lo stato ambientale (SACA) perché non contemplati dalla nuova normativa introdotta.

Di seguito si riportano le tabelle relative agli indici di qualità che concorrono a definire lo stato ecologico e stato ambientale di un corso d'acqua secondo il D.Lgs 152/99.

Il LIM viene calcolato individuando il livello di inquinamento ed il conseguente punteggio da attribuire a ciascuno dei parametri elencati in tabella 1 e sommando i punteggi così ottenuti. Si determina, quindi, il LIM individuando l'intervallo in cui ricade tale somma.

La classificazione dello stato ecologico (tabella 2), viene effettuata incrociando il dato risultante dai macrodescrittori con il risultato dell'I.B.E., attribuendo il risultato peggiore tra quelli derivati dalle valutazioni relative ad I.B.E. e macrodescrittori.

Al fine della attribuzione dello stato ambientale del corso d'acqua, i dati relativi allo stato ecologico andranno rapportati con i dati relativi alla presenza degli inquinanti chimici seconde lo schema riportato in tabella 3.

Parametro	Livello 1	Livello 2	Livello 3	Livello 4	Livello 5
100-OD (% sat.) (*)	≤ 10 (#)	≤ 20	≤ 30	≤ 50	> 50
BOD5 (O2 mg/L)	< 2,5	≤ 4	≤ 8	≤ 15	> 15
COD O2 mg/L)	< 5	≤ 10	≤ 15	≤ 25	> 25
NH4 (N mg/L)	< 0,03	≤ 0,10	≤ 0,50	≤ 1,50	> 1,50
NO3 (N mg/L)	< 0,3	≤ 1,5	≤ 5,0	≤ 10,0	> 10,0
Fosforo totale (P mg/L)	< 0,07	≤ 0,15	≤ 0,30	≤ 0,60	> 0,60
Escherichia coli (UFC/100 mL)	< 100	≤ 1.000	≤ 5.000	≤ 20.000	> 20.000
Punteggio da attribuire per ogni parametro analizzato (75° percentile del periodo di rilevamento)	80	40	20	10	5
LIVELLO DI INQUINAMENTO DAI MACRODESCRITTORI	480-560	240-475	120-235	60-115	< 60

^(*) la misura deve essere effettuata in assenza di vortici; il dato relativo al deficit o al surplus deve essere considerato in valore assoluto;

Tab. 1. Livello di inquinamento da macrodescrittori

	Classe 1	Classe 2	Classe 3	Classe 4	Classe 5
I.B.E.	≥ 10	8 - 9	6 - 7	4 - 5	1, 2, 3
LIVELLO DI INQUINAMENTO MACRODESCRITTORI	480 - 560	240 - 475	120 - 235	60 - 115	< 60

Tab. 2. Stato ecologico del corso d'acqua

Stato Ecologico □	Classe 1	Classe 2	Classe 3	Classe 4	Classe 5
Concentrazione inquinanti di cui alla Tabella 1					
≤ Valore Soglia	ELEVATO	BUONO	SUFFICIENTE	SCADENTE	PESSIMO
> Valore Soglia	SCADENTE	SCADENTE	SCADENTE	SCADENTE	PESSIMO

Tab. 3. Stato ambientale del corso d'acqua

Nel 2010, l'Indice Biotico Esteso (IBE) è stato sostituito dagli Elementi di Qualità Biologica (EQB) previsti dal Decreto Legislativo n. 152 del 3 aprile 2006. Il piano di monitoraggio di EQB e parametri a sostegno (chimica di base e idromorfologia) è stato impostato nel 2010 e ha durata triennale. Il primo quadro complessivo dello stato dei corpi idrici si avrà quindi solo al termine dei tre anni di monitoraggio, quando si sarà completato anche il primo ciclo di monitoraggio degli elementi chimico fisici a sostegno e della chimica.

Infine, per le acque a specifica destinazione (acque destinate alla produzione di acqua potabile e acque destinate alla vita dei pesci salmonidi e ciprinidi) viene indicata la loro conformità.

Per ciò che concerne le acque lentiche secondo il D.Lgs. 152/99 sono previsti campionamenti nel periodo di massimo rimescolamento ed in quello di massima stratificazione delle acque. Per determinare lo stato ecologico dei laghi (SEL) viene valutato lo stato trofico (che esprime le condizioni di un ambiente acquatico in funzione della quantità di nutrienti in esso contenuti) secondo il criterio di classificazione previsto dal D.M. n. 391 del 29/12/2003. Il metodo si basa sull'utilizzo di una tabella per l'individuazione del livello da attribuire alla trasparenza e alla clorofilla "a" (tabella 4), di due tabelle a doppia entrata per l'attribuzione del livello all'ossigeno disciolto e al fosforo totale (tabelle 5 e 6), e di una tabella di normalizzazione dei livelli ottenuti per i singoli parametri per l'attribuzione della classe di stato ecologico (tabella 7).

^(#) in assenza di fenomeni di eutrofia;

Parametro	Livello 1	Livello 2	Livello 3	Livello 4	Livello 5
Trasparenza (m) val.min	>5	≤5	≤2	≤1.5	≤1
Clorofilla a (µg/l) val.max	<3	≤6	≤10	≤25	>25

Tab. 4. Individuazione dei livelli per la trasparenza e la clorofilla

Valore minimo ipolimnio nel periodo di massima stratificazione	V	alore a 0 m nel	periodo di mas	sima circolazior	ne
	>80	<80	<60	<40	<20
>80	1				
≤80	2	2			
≤60	2	3	3		
≤40	3	3	4	4	
≤20	3	4	4	5	5

Tab. 5. Individuazione dei livelli per l'ossigeno (% saturazione)

Valore massimo riscontrato	Valore a 0 m nel periodo di massima circolazione					
	<10	<25	<50	<100	>100	
<10	1					
≤25	2	2				
≤50	2	3	3			
≤100	3	3	4	4		
>100	3	4	4	5	5	

Tab. 6. Individuazione del livello per il fosforo totale (mg/l)

Somma dei singoli punteggi	Classe
4	1
5-8	2
9-12	3
13-16	4
17-20	5

Tab. 7. Attribuzione della classe dello stato ecologico attraverso la normalizzazione dei livelli ottenuti per i singoli parametri

Infine, nel presente rapporto viene dedicato un capitolo alla balneabilità dei laghi di Santa Croce e Mis.

1.1 Inquadramento territoriale della provincia di Belluno e dei bacini (Piave e Cismon) compresi nel territorio provinciale

Il territorio della provincia di Belluno si identifica quasi interamente con il bacino del fiume Piave; ne rimane esclusa la zona più meridionale rappresentata da una porzione di bacino del torrente Cismon, che fa parte integrante del sistema idrografico del fiume Brenta (fig.1).

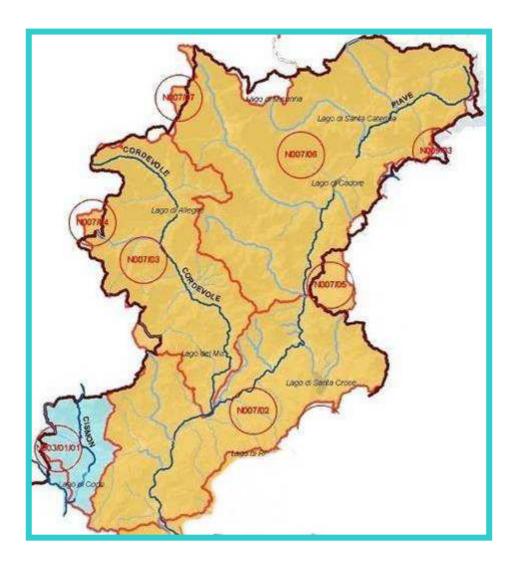


Fig.1. Bacini idrografici principali della provincia di Belluno

II Piave

La superficie occupata dal bacino del fiume Piave è pari a 3505 km² circa sui 3678 dell'intera provincia; il bacino del Cismon interessa soltanto il 5 % circa del territorio. Le sorgenti del Piave scaturiscono a quota 2037 m s.l.m. alle pendici meridionali del gruppo del Peralba (m 2693). Il ramo iniziale, ripido e a carattere torrentizio, scorre in una valle stretta e incassata. Modesti sono gli affluenti che scendono dalle pendici occidentali dei monti Chiadenis e Chiadin e che costituiscono lo spartiacque con il bacino del Fiume Tagliamento. Il Piave, attraversata la conca di Sappada, riceve il Cordevole di Visdende in località Salafossa toccando poi Presenaio. A San Pietro di Cadore e poi a Campolongo viene arricchito dalle acque del rio Rin, affluente di destra, e del torrente Frison, affluente

di sinistra; giunge poi a Santo Stefano di Cadore dove riceve, sulla destra, il torrente Padola che drena l'area del Comelico superiore fino al passo Monte Croce. Da Santo Stefano di Cadore l'alveo si restringe notevolmente incassandosi tra le scoscese pareti del monte Tudaio. Superato il serbatoio ENEL di Comelico, in località Tre Ponti riceve come tributario di destra il torrente Ansiei che scendendo dalle Tre Cime di Lavaredo attraversa l'abitato di Auronzo dove è presente il serbatoio ENEL di Santa Caterina. Da tre Ponti scende nella conca cadorina ricevendo quali affluenti sulla sinistra il rio Piova, il rio Cridola e il torrente Talagona e, sulla destra il rio Longiarin e il torrente Molin. A Calalzo forma, per lo sbarramento artificiale ENEL il lago di Pieve di Cadore nel quale confluisce in destra il torrente Molinà. A valle della diga di Pieve di Cadore il Piave scorre incassato fino a Perarolo di Cadore dove riceve, in destra, il torrente Boite. Scorrendo sempre in una valle stretta e incassata il corso d'acqua attraversa i paesi di Ospitale, Termine, Castellavazzo e Longarone; in questo tratto riceve il modesto apporto dei torrenti Valmontina e Vajont, entrambi in sinistra idrografica. Poco a valle di Longarone giunge il contributo del torrente Maè, collettore della val Zoldana. Il Piave in seguito continua il suo corso in una valle più ampia e aperta divagando su un vasto letto alluvionale fino a raggiungere l'abitato di Ponte nelle Alpi dove confluisce, sulla sinistra, il fiume Rai, emissario del lago di Santa Croce su cui insiste il bacino del torrente Tesa; il Piave proseguendo poi verso Belluno riceve, in corrispondenza dell'abitato, il torrente Ardo che scende dalle pendici del monte Schiara. Prosegue poi in direzione sud - ovest ricevendo quali tributari sulla sinistra i torrenti Cicogna, Limana, Ardo. A Bribano di Sedico entra in destra idrografica il torrente Cordevole caratterizzato da un consistente contributo in termini di portata. Dopo la confluenza del Cordevole il Piave tende a divagare nel larghissimo letto alluvionale dividendosi in numerosi rami anastomizzati. Contribuiscono in questo tratto i torrenti Terche e Rimonta sulla sinistra e Veses sulla destra. Prima di giungere nel feltrino, vi è la confluenza con il torrente Caorame che drena la Val Canzoi e sempre sulla destra, del Sonna alimentato anche dallo Stizzon che nasce dalle pendici settentrionali del Monte Grappa. Dopo un tratto senza contributi significativi, a Fener di Alano di Piave il Piave riceve in destra il torrente Tegorzo ed entra nella provincia di Treviso.

II Cismon

Il torrente Cismon è il principale affluente del Brenta e drena un ampio bacino di 642 km², compreso per il 70% nella provincia di Trento (439 km²), e per il restante 30%, pari a 203 km², in provincia di Belluno.

Il torrente Cismon nasce dal Passo Rolle in Trentino, sotto il Cismon della Pala, che con i suoi 3184 m s.l.m. rappresenta la massima elevazione del bacino.

Prima di entrare nel territorio veneto, il Cismon riceve in sinistra le acque del torrente Canali, che delimita a Sud le Pale di San Martino, ed il torrente Noana che delimita a Nord le Vette Feltrine.

Il Cismon entra in territorio Veneto a valle della confluenza con il Vanoi. In provincia di Belluno si ricordano tra gli affluenti significativi il torrente Ausor in sinistra, a monte dello sbarramento di Ponte Serra ed il Senaiga, il cui bacino ricade però quasi completamente in Provincia di Trento. Proseguendo verso valle, all'altezza dell'abitato di Rocca d'Arsiè, ove la vallata si restringe, una diga eretta a scopi elettro-irrigui sul finire degli anni '50 dall'ENEL sbarra il corso d'acqua del Cismon trattenendo tutta la portata fluente. Superata la stretta forra il Cismon scorre con percorso tortuoso sino alla confluenza con il fiume Brenta poco a monte dell'abitato di Cismon del Grappa. La lunghezza complessiva dell'asta del Cismon è pari a 53,2 km.

Tra i corsi d'acqua più importanti, con bacino superiore a 100 km², presenti in provincia di Belluno vanno segnalati:

II Padola

Il torrente Padola si origina in Comelico Superiore nei pressi del Passo Monte Croce confluendo in Piave a Santo Stefano di Cadore. Riceve in località Gera, a valle di candide il cospicuo contributo del torrente Digon.

L'Ansiei

Il torrente Ansiei nasce dal lago di Misurina, nel Cadore. Alimenta il lago di Santa Caterina e dopo un corso di circa 28 km affluisce nel Piave, presso la località Tre Ponti nel comune di Auronzo di Cadore.

II Boite

Il Boite è un affluente di destra del fiume Piave. Nasce in località Campo Croce a quota 1.800 metri circa, attraversa i comuni di Cortina d'Ampezzo, San Vito di Cadore, Borca di Cadore, Vodo di Cadore, Valle di Cadore per immettersi nel Piave a Perarolo di Cadore. Lungo il suo corso riceve numerosi torrenti e rii montani, di cui il maggiore è il torrente Rite che attraversa Cibiana di Cadore. Sul Boite insistono i laghi artificiali di Vodo e Valle di Cadore.

II Maè

Il torrente Maè nasce nella Val di Zoldo in comune di Zoldo Alto ai piedi del monte Civetta. Dopo l'abitato di Forno di Zoldo e il lago di Pontesei, il torrente scorre in un'ampia gola (Canal del Maè) che termina presso Longarone, dove si immette nel Piave. Tra i principali affluenti il torrente Moiazza, che incontra il Maè nella frazione di Dont di Zoldo e il torrente Pramper che confluisce a Forno di Zoldo.

II Tesa

Il torrente Tesa drena il bacino dell'Alpago e rappresenta il principale immissario del lago di Santa Croce.

L'Ardo

Il torrente Ardo nasce dal monte Schiara nei pressi del rifugio Settimo Alpini, all'interno del Parco Nazionale delle Dolomiti Bellunesi. Il suo corso, di circa 12 chilometri, si snoda interamente all'interno del comune di Belluno.

Subito a valle della località Ponte Mariano riceve sulla sinistra le acque del Rui Fret, che scorre alle pendici del versante settentrionale del monte Serva.

A circa metà del suo cammino, a monte di Gioz, riceve le acque del torrente Medon, suo principale tributario (affluente di destra lungo 5 chilometri che scorre tra la Pala Alta e il monte Terne). Nei pressi di Belluno sfocia nel Piave.

II Biois

Il Biois è il principale corso d'acqua della omonima valle. Ha origine in Trentino da tre rami, uno presso la Cima di Costabella, gli altri sul Sasso di Valfredda, sopra il Passo San Pellegrino. Attraversa i comuni di Falcade, Vallada Agordina, Canale d'Agordo (all'altezza del quale riceve da destra il torrente Liera) e Cencenighe Agordino dove si immette nel Cordevole, appena a monte del Lago del Ghirlo.

II Cordevole

Il fiume Cordevole è considerato il maggior affluente del Piave e il principale fiume completamente contenuto nella provincia di Belluno. Nasce presso il Passo Pordoi, in comune di Livinallongo del Col di Lana, e confluisce nel fiume Piave tra Sedico e Santa Giustina. Il torrente estende il suo bacino idrografico quasi totalmente nell'Agordino. A Caprile (in comune di Alleghe) riceve l'apporto del torrente Fiorentina e del Pettorina (il quale nasce a ridosso del versante meridionale della Marmolada), poi ad Alleghe forma l'omonimo lago (originatosi nel 1771 da una frana del monte Piz e ora sbarrato da una traversa); a Cencenighe riceve il Biois e forma il lago del Ghirlo. All'altezza di Taibon Agordino confluisce il Tegnas, supera Agordo e poi prosegue fino a Peron (in comune di Sedico). A pochi chilometri dalla foce, a quota 320 m s.l.m. riceve dalla destra idrografica le acque del Mis. I suoi principali affluenti sono i torrenti Andraz e Fiorentina in sinistra idrografica, il Pettorina, il Biois, il Tegnas ed il Mis in destra idrografica.

II Mis

Il torrente Mis nasce ai piedi della Croda Granda e del Sass d'Ortiga ricevendo a valle di Gosaldo, nell'area di California, le acque dei torrenti Pezzea e Laonei. Superata la stretta forra di erosione nota come Canale del Mis, riceve in corrispondenza del lago artificiale che lo sbarra, il contributo del torrente Falcina. Confluisce in Cordevole a valle di Sospirolo.

II Caorame

Il Caorame è un torrente che nasce sul versante sud del Sass de Mura, nel comune di Cesiomaggiore. Da lì si immette nel lago artificiale della Stua, per poi proseguire verso Sud-Ovest lungo tutta la Val Canzoi. Al termine del suo percorso si immette nel Piave.

II Sonna

Il fiume Sonna alimentato dallo Stizzon nasce dalle pendici settentrionali del Monte Grappa e dopo l'attraversamento della città di Feltre confluisce in Piave.

1.2 Aspetti geomorfologici connessi con i corsi d'acqua

I fiumi

Per quanto riguarda gli aspetti geomorfologici, i bacini del Piave e del Cismon ricadenti in provincia di Belluno risultano direttamente connessi all'assetto geologico dell'area attraversata (descritto successivamente). Dalla sorgente fino a Ponte nelle Alpi, sia il Piave che i suoi principali affluenti (Padola, Boite, Maè) tagliano nel loro corso quasi

normalmente l'andamento delle stratificazioni e incidono profondamente le svariate formazioni geologiche che costituiscono la struttura geologica dell'area con rocce che vanno dal basamento paleozoico ai sedimenti giurassici e cretacici. La morfologia è quindi quella tipica delle valli trasversali. A Ponte nelle Alpi le caratteristiche del paesaggio cambiano bruscamente: il Piave raggiunge l'ampia sinclinale bellunese che guida il suo corso fino a Feltre. In questo tratto la valle è ampia a fondo pianeggiante con fianchi relativamente morbidi; ci troviamo in una tipica valle longitudinale che contrasta nettamente con il precedente tratto "trasversale" di origine erosiva. Ardo, Cordevole, Caorame ecc. assumono invece sempre i caratteri di valli trasversali.

Da Busche il Piave abbandona l'ampia valle longitudinale per entrare in una valle trasversale relativamente stretta che taglia normalmente la catena del Grappa – Tomatico – Cesen, le cui stratificazioni formano un largo arco anticlinale.

Le caratteristiche infine del bacino bellunese del Cismon rientrano quasi interamente nelle forme della valle trasversale erosiva.

I Laghi

Nella provincia di Belluno sono presenti 3 laghi naturali ed oltre 120 piccoli laghetti d'alta montagna che nel 70% dei casi non superano l'ettaro di superficie.

Il lago di Santa Croce, alimentato principalmente dal torrente Tesa, è il più esteso. Formatosi per sbarramento a seguito di una frana di epoca quaternaria, è situato al confine tra Belluno e Treviso, nella zona dell'Alpago; ha una superficie di 7,8 km² e una profondità massima di 44 m.

Il lago di Alleghe, anch'esso formato dallo sbarramento di una frana recente (1771) è posto tra i paesi di Cencenighe e Caprile, ha una superficie di 0,5 km² e una profondità massima di 7-8 m.

Il lago di Misurina, di origine glaciale, si estende per una superficie di 0,1 km² con una profondità massima di 4-5 m.

I laghi significativi del Bellunese comprendono, inoltre, 4 laghi di origine artificiale.

Il lago del Mis è situato a Sospirolo poco distante da Belluno, copre una superficie di 1,6 km² e raggiunge una profondità massima di 58 m.

Il lago del Corlo si trova tra Arsiè e Cismon del Grappa, ha una superficie di 2,5 km² e una profondità massima di 53 m.

Il lago di Centro Cadore è tra i più estesi dell'intera provincia, si sviluppa infatti su tutta la lunghezza della vallata del Centro Cadore per una superficie di 2,3 km² e una profondità massima di 106 m.

Il lago di Santa Caterina è situato nella parte alta del Cadore nel comune di Auronzo di Cadore. E' un lago artificiale originatosi con la costruzione della diga sul torrente Ansiei. E' situato ad una altitudine di 830 metri con una superficie di 0,3 km² ed una profondità massima di 29 m.

Sono inoltre presenti i seguenti invasi artificiali realizzati a scopo idroelettrico e irriguo che non risultano oggetto di monitoraggio da parte di ARPAV:

- Comelico sul Piave
- Valle di Cadore sul torrente Boite
- Pontesei sul torrente Maè
- Val Gallina sul torrente Gallina
- Fedaia sui torrenti Avisio e Cordevole
- Cavia sul torrente Biois

- Stua sul torrente Caorame
- Ghirlo sul torrente Cordevole

In provincia di Belluno il 90% dell'invaso disponibile è costituito dai 3 serbatoi principali: Pieve di Cadore, Santa Croce e Mis.

1.3 Inquadramento ambientale (SIC, ZPS, aree protette, aree a parco, ecc.)

Il territorio della provincia di Belluno è classificato come interamente montano. Da questa classificazione si può informalmente escludere solo la media Valle del Piave (Valbelluna), che presenta piuttosto il carattere di paesaggio di fondovalle e pedemontano collinare.

La peculiarità principale del territorio è rappresentata dalle Dolomiti, il cui paesaggio è il risultato di una storia geologica complessa, ma anche di una cura tradizionale del territorio che ha favorito l'armonica distribuzione di prati e boschi, che genera variegate condizioni ambientali e paesaggistiche.

Non mancano altri paesaggi, morfologicamente diversi, ma con storie antropiche analoghe, come in tutte le comunità alpine.

Anzitutto le Prealpi, anch'esse ricche di boschi e prati, con forre e valli incise, storicamente caratterizzate dalle attività agricole e pastorali, segnate da flussi migratori antichi e, ancor più, dal recente abbandono. All'estremità settentrionale della provincia si distingue il Comelico, con i morbidi e più scuri paesaggi della catena Carnica principale.

Le vicende glaciali degli ultimi due milioni di anni hanno certamente delineato le forme attuali del paesaggio, selezionando comunità vegetali e faunistiche adattate ai diversi ambienti. Il fenomeno è ancora in atto e il concetto stesso di paesaggio, pur nell'apparente stabilità dei tempi brevi, implica un cambiamento e un adattamento continuo.

Infine, a livello bio-geografico l'asse del Piave ha svolto, notoriamente, un ruolo rilevante e rappresenta un limite per molte specie che non lo superano. La differenza più marcata, peraltro, si verifica tra la parte meridionale della provincia, esposta a influenze submediterranee, e quella interna più continentale. Queste condizioni morfologiche e geomorfologiche hanno creato un ambiente unico e di elevatissimo pregio in cui vallate antropizzate penetrano il territorio e isolano estese aree poste generalmente a quote elevate. Un tale contesto ambientale ha posto la necessità di protezione e tutela come una priorità che ha trovato risposta non solo attraverso la protezione diretta delle specie animali e vegetali, ma soprattutto tramite la tutela delle aree ospitanti secondo criteri di equilibrio tra uomo e natura. E' la direzione in cui si sono mosse le normative di settore nazionali e comunitarie le quali prevedono che l'oggetto di tutela non sia la singola specie, ma l'habitat in cui la specie interessata vive e verso cui la pressione antropica è indirizzata. Per queste motivazioni, il sistema delle aree protette in provincia di Belluno, rappresentato dal Parco Nazionale delle Dolomiti Bellunesi, dalle Riserve Naturali Statali (per buona parte ricomprese nel Parco Nazionale), dal Parco Regionale delle Dolomiti di Ampezzo, dalle Riserve Naturali Regionali, dalle Zone di Protezione Speciale (ZPS) e dai Siti di Importanza Comunitaria (SIC), risulta essere una importante realtà che copre oltre il 50% del territorio e in cui il "sistema foreste", inteso sia in senso stretto che come habitat, è certamente predominante (vedi fig.2).

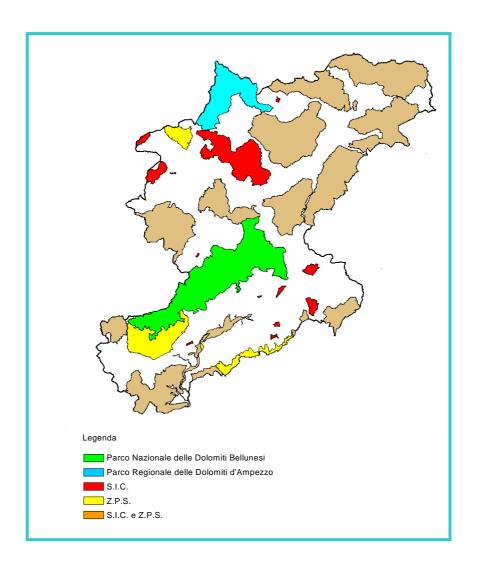


Fig 2. Il sistema delle aree protette in provincia di Belluno

Questo esteso sistema ha certamente dei riflessi sulla qualità delle acque della provincia e, come evidenziato nella sottostante tab. 8, interessa direttamente anche alcuni corpi idrici superficiali.

Tipo area protetta	Denominazione	Superfice (ha)
Riserva Statale	Vincheto di Cellarda (Piave)	92
S.I.C.	Fontane di Nogarè (Piave)	212
	Fiume Piave dai Maserot al confine con	2200
S.I.C.	provincia di Treviso	3209
S.I.C.	Lago di S.Croce	788
S.I.C.	Lago di Misurina	75

Tab 8. Aree protette direttamente connesse a corpi idrici superficiali

1.4 Cenni sulla zona climatica e regime pluviometrico

Il bacino del Piave appartiene alla zona climatica temperato continentale umida che è comune a molte aree del versante meridionale delle Alpi. A prescindere dagli effetti dell'altitudine le stagioni risultano abbastanza ben definite e l'escursione termica relativamente elevata.

Con riferimento al regime pluviometrico, la provincia di Belluno può essere divisa in due fasce, prealpina e alpina. La fascia prealpina comprende lo spartiacque tra le province di Belluno e Treviso, la parte settentrionale del Grappa e la valle del Piave fino a Belluno e all'Alpago. Pur essendo la zona di massima piovosità del bacino, presenta valori sensibilmente inferiori di apporto idrico rispetto alle zone prealpine dei bacini contermini più ad est: la piovosità media annua è compresa tra 1400 e 1600 mm, e i valori massimi vengono raggiunti sulle aree di confine tra bellunese e pordenonese. La fascia alpina coincide con la parte settentrionale della provincia; qui la piovosità diminuisce gradualmente spostandosi verso nord ovest e si mantiene relativamente elevata solo verso il confine con il Friuli. I valori medi annui vanno dai 1500 mm delle zone meridionali ai 1100 delle Dolomiti intorno a Cortina (Fonte Autorità di Bacino dei fiumi Isonzo Tagliamento Piave Brenta-Bacchiglione).

1.5 Cenni sul trasporto solido

Il trasporto solido è un fattore importante nella dinamica di un corso d'acqua che viene condizionato da fattori geologici e idraulici. Il corso d'acqua per poter svolgere l'azione di erosione e trasporto deve avere a disposizione sorgenti di materiali idonei ad essere veicolati. Le formazioni geologiche maggiormente coinvolte e predisposte al prelievo fluviale sono le coperture sciolte nelle loro differenti strutture di deposizione: detriti di falda, morene, depositi alluvionali, accumuli di frana, coltri di degradazione di substrati rocciosi. Questi imponenti accumuli di materiali sciolti, ben presenti sul fondovalle e sui bassi versanti sia del Piave che dei suoi principali affluenti (Cordevole, Boite, Maè, Ansiei ecc.) costituiscono una notevolissima fonte per il trasporto solido fluviale. Attualmente i versanti, soprattutto nella fascia inferiore dei fianchi vallivi, sono interessati da apporti solidi e frequenti processi di frana che contribuiscono direttamente o indirettamente a fornire materiale solido fluitabile. Il 36% della superficie della provincia di Belluno, pari a 133.000 ettari, risulta interessata da dissesti e frane, come riportato nella fig.4.

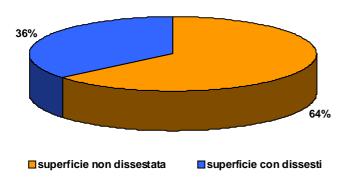


Fig. 4. Percentuale di superficie della provincia di Belluno interessata da dissesti e frane, anno 2004 (Fonte: Regione Veneto – Direzione Difesa del Suolo e Protezione Civile)

Le aree caratterizzate dal maggior numero di frane sul territorio, sono evidenziate nella successiva fig.5; il dato appare chiaramente legato alle caratteristiche geolitologiche e strutturali del territorio, oltre che all'energia del rilievo. Il Bacino del Cordevole, assieme a

quello del Maè, appaiono quelli più penalizzati ed infatti, durante l'alluvione del 1966 subirono i maggiori danni soprattutto a causa delle portate solide fluitate dalle eccezionali portate liquide.

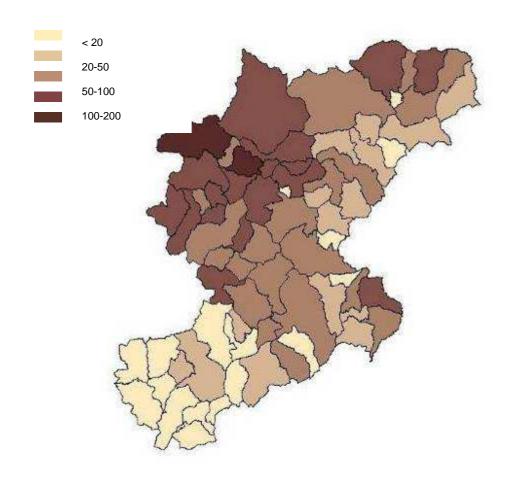


Fig. 5. Distribuzione in classi numeriche delle frane e delle aree franose nei comuni della provincia di Belluno, anno 2004 (Fonte: Regione Veneto – Direzione Difesa del Suolo e Protezione Civile)

Per quanto riguarda i fenomeni di erosione attiva le situazioni sono localizzate e particolari mentre sono diffuse le aree di deposizione alluvionale ricoperte da vegetazione arbustiva e arborea riattivabili tuttavia in occasione di eventi di piena eccezionale. Localmente questi depositi assumono rilevante importanza come zone di accumulo di materiale facilmente erodibile: ne è esempio la confluenza del torrente Fiorentina nel Cordevole a Caprile, la confluenza del torrente Pettorina sempre nel Cordevole, la confluenza Biois Cordevole a Cencenighe.

Il trasporto solido che può essere di fondo (trascinamento e saltazione degli elementi più grossolani) o in sospensione (torbida) interferisce, nell'ambito provinciale con il sistema delle derivazioni idrauliche e soprattutto dei bacini artificiali. I serbatoi artificiali infatti sottraggono al fenomeno il contributo delle aree sottese risultando soggetti a fenomeni di interrimento importanti solo parzialmente minimizzabili con periodici interventi di svaso dagli organi di scarico di fondo. In ogni caso il sistema delle derivazioni crea importanti squilibri nella complessa dinamica del trasporto solido con ripercussioni nei cicli erosivo deposizionali soprattutto durante gli eventi di piena.

2. LA RETE DI MONITORAGGIO DELLA QUALITÀ AMBIENTALE

2.1 Descrizione della rete di monitoraggio ambientale delle acque superficiali

Nel corso degli anni è stata svolta la revisione costante della localizzazione dei punti di monitoraggio nell'ottica di ottimizzazione della rete preesistente. In totale la rete di monitoraggio veneta per il 2010 è costituita da 270 punti (vedi fig.6).

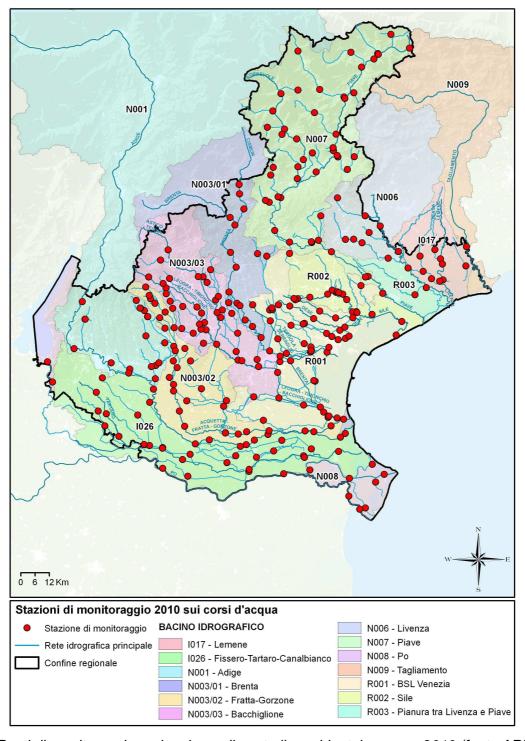


Fig. 6. Punti di monitoraggio regionale per il controllo ambientale – anno 2010 (fonte ARPAV)

Corsi d'acqua

In provincia di Belluno la rete 2010 di monitoraggio dei corsi d'acqua è costituita dai seguenti punti destinati al controllo ambientale (AC), all'uso idropotabile (POT) e/o alla vita dei pesci (VP). In azzurro vengono evidenziate le stazioni di nuova attivazione 2010 e in giallo le stazioni disattivate sempre nel 2010.

Cod.	CORPO IDRICO	COMUNE	LOCALITA'	DESTINAZIONE
1	T. BOITE	Cortina	FIAMMES	AC – VP
3	T. BOITE	Borca	PONTE DI CANCIA	AC
4	T. CORDEVOLE	Alleghe	PONTE LE GRAZIE	AC
5	T. PADOLA	Santo Stefano	S.STEFANO - PONTICELLO A MONTE (IBE 400 m A	AC
6	F. PIAVE	Santo Stefano	PONTE SS. 52	AC
7	T. ANSIEI	Auronzo	PONTE DA RIN	AC – VP
10	T. BIOIS	Cencenighe	2 km A MONTE CONFLUENZA NEL CORDEVOLE	AC
11	T. MAE'	Forno di Zoldo	ALBERGO CORINNA	AC – VP
13	F. PIAVE	Ponte nelle Alpi	LONGHERE, A VALLE DELLO SBARRAMENTO DI SOVERZENE	AC – VP
14	T. CAORAME	Cesiomaggiore	PONTICELLO A NORD AGRITURISMO	AC – VP
15	T.CISMON	Lamon	PALA DEL SCIOSS	AC
16	F. PIAVE	Lentiai	600 m A VALLE DELLO SBARRAMENTO DI BUSCHE	AC –VP
17	T. CAORAME	Feltre	A VALLE FERROVIA NEMEGGIO	AC – VP
18	T. RAI	Ponte nelle Alpi	PONTE PER PAIANE	AC
21	T. CORDEVOLE	Sedico	A MONTE DEL PONTE PER BRIBANO	AC – SSP – ERB – VP
24	T. TESA	Farra d'Alpago	PONTE SS.422 (IBE 150 m A MONTE)	AC
28	T.CISMON	Fonzaso	CASE BALZAN	AC
29	T. SONNA	Feltre	EX PONTE DELLE CORDE (IBE 500 m A VALLE)	AC
32	F. PIAVE	Alano	FENER - 200 m A MONTE DELLO SBARRAMENTO	AC - SSP - ERB - VP
360	F. PIAVE	Limana	PRALORAN	AC – VP
408	RIO DELLE SALERE	Ponte nelle Alpi	PIAN DI VEDOIA-PRESA ACQUEDOTTO	AC – POT
409	T. ANFELA	Pieve di Cadore	ANFELA-FORCELLA X-PRESA ACQUEDOTTO	AC – POT
419	T. MEDONE	Belluno	VAL MEDONE - PRESA ACQUEDOTTO	AC – VP
420	RIO FRARI	Ponte nelle Alpi	PONTE DEL BUS-PRESA ACQUEDOTTO	AC – POT
600	F. PIAVE	Sappada	VECCHIO MULINO	AC – VP
601	F. PIAVE	Santo Stefano	PONTE DELLA LASTA	AC
602	F. PIAVE	Lozzo	IN LINEA D'ARIA CON I CAMPI DA TENNIS	AC
603	F. PIAVE	Perarolo	1 km A VALLE DELLA CONFLUENZA DEL BOITE	AC – VP
604	T. CORDEVOLE	Agordo	PONTE PER VOLTAGO	AC
605	T. CORDEVOLE	La Valle Agordina	LA MUDA	AC – VP
606	T. BOITE	Perarolo	600 m A MONTE DELLA CONFLUENZA NEL PIAVE	AC
607	T. MIS	Sospirolo	100 m A VALLE DEL PONTE DI GRON	AC
608	T. ANSIEI	Lozzo	GOGNA	AC
609	T. MAE'	Longarone	PIAN DELLA SEGA	AC – VP
616	T. CAORAME	Cesiomaggiore	PONTE FRASSEN	AC –VP
617	T. FIORENTINA	Selva	PASSO STAULANZA	AC
1031	T. COLMEDA	Feltre	PONTE PEDONALE VIA MONTE CIMA	AC - VP
1032	T. CORDEVOLE	Sedico	LOC. PERON	AC –VP
1086	T. CISMON	Sovramonte	PONTE A MONTE CONFLUENZA RIO SELVA	AC - VP
1087	T. FUNES	Chies d'Alpago	LOC. MOLINI A MONTE BRIGLIA	AC
1088	T. LONDO	S. Pietro di Cadore	LOC. BERGERIE	AC
1089	T. BORDINA	Taibon Agordino	PONTE LOC. COL DI PRA'	AC
				AC_VP

Tab. 9. Punti di monitoraggio delle acque superficiali in provincia di Belluno (fonte ARPAV)

Si riporta di seguito la cartografia con l'ubicazione dei punti di monitoraggio della rete ARPAV nei bacini del Piave e del Cismon in provincia di Belluno.

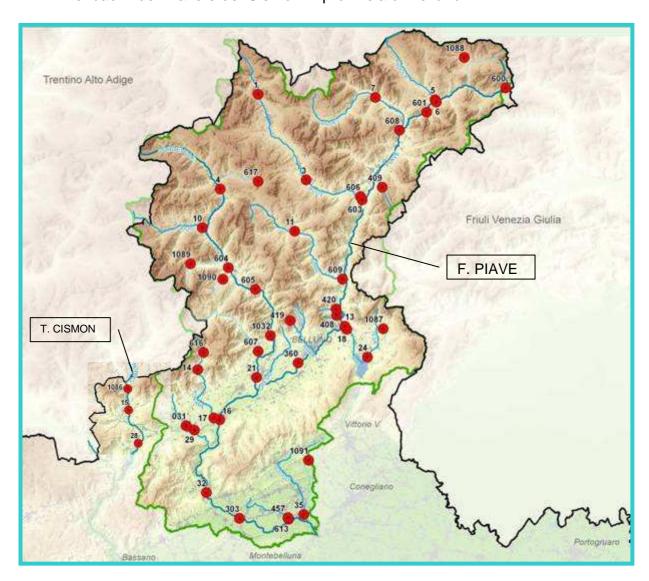


Fig. 7. Punti di monitoraggio presenti in provincia di Belluno – anno 2010 (fonte ARPAV)

Laghi

Il monitoraggio nel Veneto interessa 12 laghi ed invasi, di cui 7 (Santa Croce, Mis, Corlo, Centro Cadore, Alleghe, Misurina, Santa Caterina) situati in provincia di Belluno, 2 (Lago e Santa Maria) in provincia di Treviso, 2 (Garda e Frassino) in provincia di Verona e 1 in provincia di Vicenza (Fimon). La rete veneta comprende 14 stazioni destinate al Controllo Ambientale (AC) ubicate in corrispondenza del punto di massima profondità di ciascun corpo idrico. Dei 14 punti con destinazione Controllo Ambientale (AC), 3 (nei laghi di Santa Croce, Mis e Misurina) sono anche destinati alla Vita dei Pesci (VP). Ai suddetti punti si aggiungono 5 stazioni destinate alla Potabilizzazione (POT) sul lago di Garda.

In provincia di Belluno la rete di monitoraggio delle acque superficiali lacustri è costituita per l'anno 2010 dai punti indicati in tabella 10.

Staz.	Lago	Bacino	Comune	Località
361	Santa Croce	Piave	Farra d'Alpago	Punto di massima profondità
362	Santa Caterina	Piave	Auronzo	Punto di massima profondità
363	Mis	Piave	Sospirolo	Punto di massima profondità
364	Centro Cadore	Piave	Pieve di Cadore	Punto di massima profondità
365	Corlo	Brenta	Arsiè	Punto di massima profondità
373	Alleghe	Piave	Alleghe	Punto di massima profondità
374	Misurina	Piave	Auronzo	Punto di massima profondità

Tab. 10. Punti di monitoraggio delle acque lacustri in provincia di Belluno (fonte ARPAV)

2.2 Descrizione della rete di monitoraggio delle acque di balneazione

Il D.lgs 116/2008 demanda alle Regioni il compito di provvedere, annualmente, all'individuazione delle zone idonee (e non) alla balneazione per l'inizio e/o per l'intera durata del periodo di campionamento, sulla base dei risultati del monitoraggio definito dalle stesse Regioni ed attuato dalle Agenzie Regionali per l'Ambiente nell'anno precedente.

La Regione del Veneto provvede pertanto ogni anno, prima dell'inizio delle campagne di monitoraggio, all'individuazione dei tratti costieri destinati alla balneazione e dei tratti da vietare per tutto l'anno tenendo conto anche della classificazione adottata sulla base dei dati dell'anno precedente. Nell'ambito delle zone di balneazione, la Regione individua quindi un numero adeguato di punti di controllo, la cui distribuzione lungo le coste è correlata alla densità balneare ed alla presenza di potenziali sorgenti di contaminazione, con particolare riferimento alle foci fluviali. Ogni punto individua una zona (c.d. area di pertinenza) che si estende di norma su entrambi i lati per un tratto di costa pari alla metà della distanza dal punto di prelievo adiacente o sino al limite del confine comunale o di zone di non balneazione.

Nella provincia di Belluno i laghi interessati sono Santa Croce e Mis (fig.8 e fig.9). La rete di monitoraggio acque di balneazione per l'anno 2010 è costituita dai punti indicati in tab.11.

Lago	Bacino	Prov.	Comune	Località
SANTA CROCE	PIAVE	BL	FARRA D'ALPAGO	Poiatte
SANTA CROCE	PIAVE	BL	FARRA D'ALPAGO	Sarathei
SANTA CROCE	PIAVE	BL	FARRA D'ALPAGO	Santa Croce
MIS	PIAVE	BL	SOSPIROLO	Falcina

Tab. 11. Punti di monitoraggio delle acque di balneazione in provincia nel 2009 (fonte ARPAV).

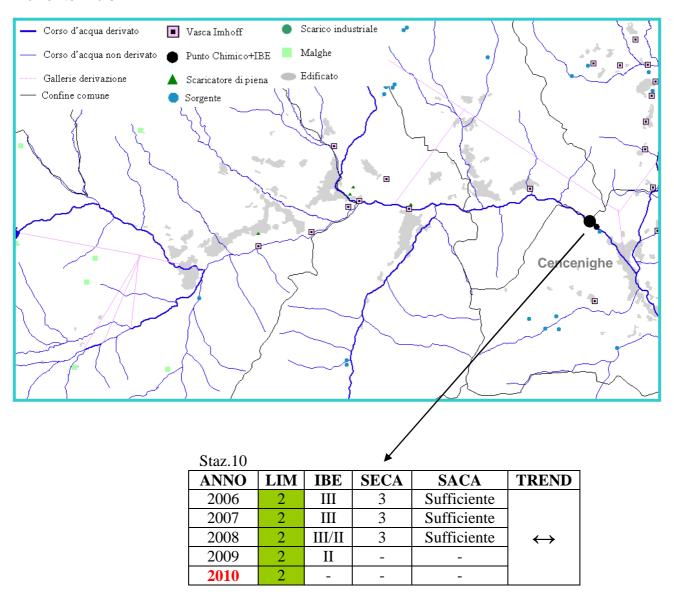
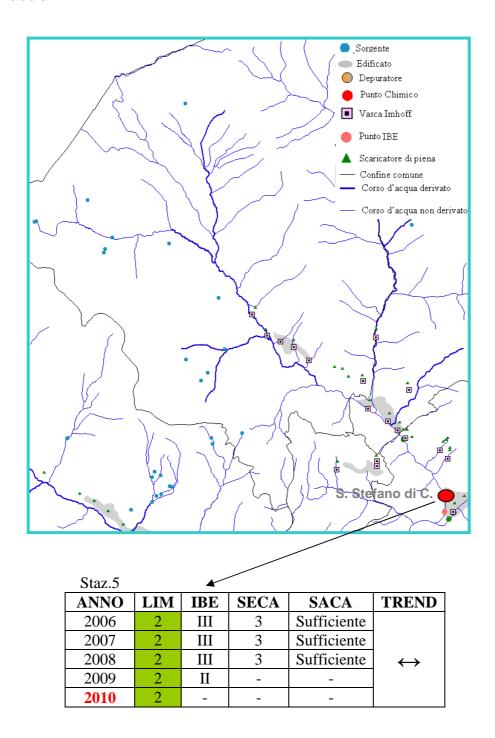

Fig. 8 . Punti di monitoraggio per balneazione nel lago di Santa Croce (fonte ARPAV)

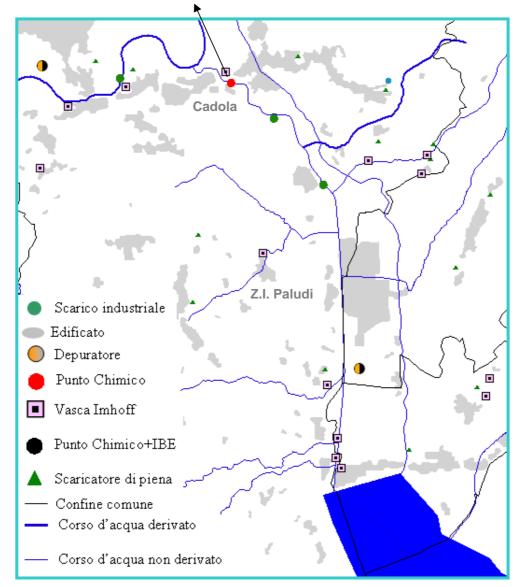
Fig. 9 . Punto di monitoraggio per balneazione nel lago del Mis (fonte ARPAV)


3. ACQUE SUPERFICIALI FLUENTI

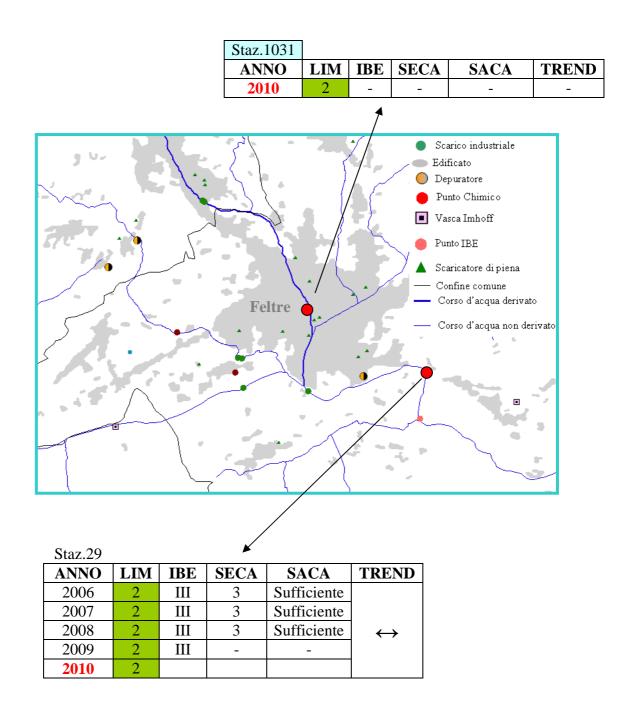
Torrente Biois

I dati del LIM evidenziano uno stato costante della qualità nel periodo di studio. L'indice biotico esteso passa da 7/8 del 2008 a 9 del 2009 e, di conseguenza, da una classe III/II ad una II evidenziando un miglioramento della qualità del corpo idrico. Il livello di inquinamento da macrodescrittori ottiene nel 2010 un punteggio 350 mantenendo ul livello 2.

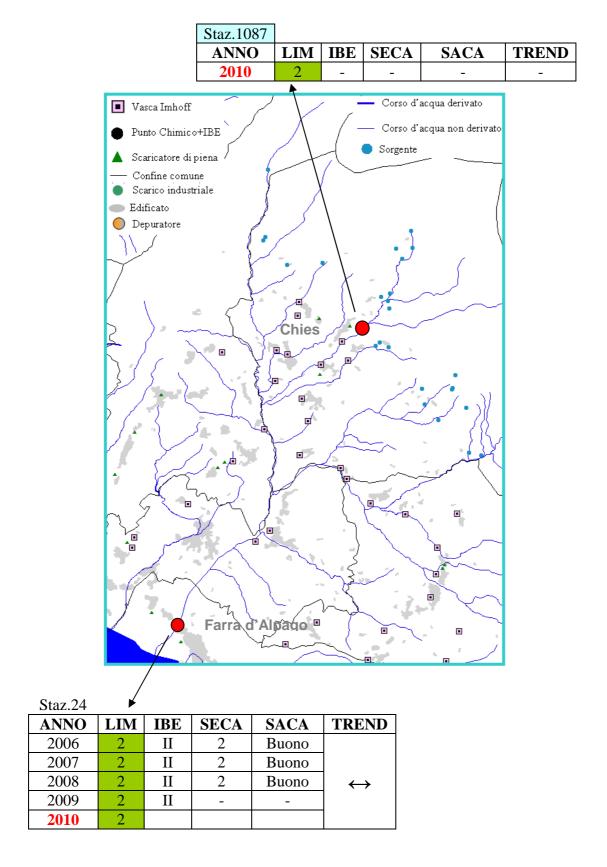
Torrente Padola



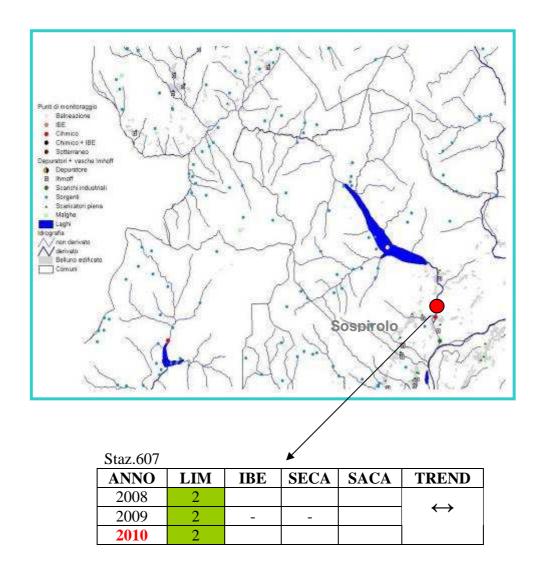
Il LIM evidenzia che le condizioni di qualità del corso d'acqua rimangono invariate negli ultimi anni, mentre l'IBE aveva fatto registrare un miglioramento passando in classe II tra il 2008 e il 2009.


Torrente Rai

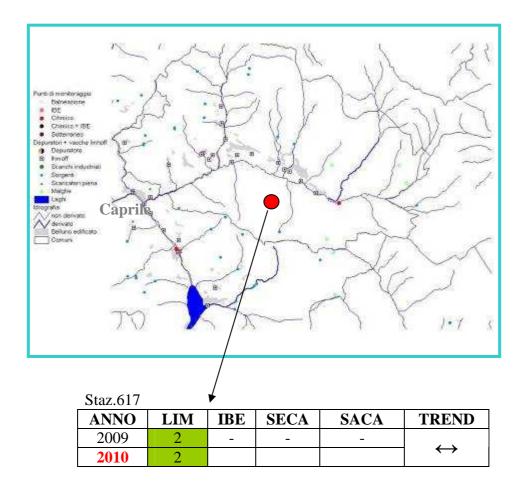
Staz.18


ANNO	LIM	IBE	SECA	SACA	TREND
2006	2	1	-	-	
2007	2	-	-	-	
2008	2	-	-	-	\leftrightarrow
2009	2	-	-	-	
2010	2				

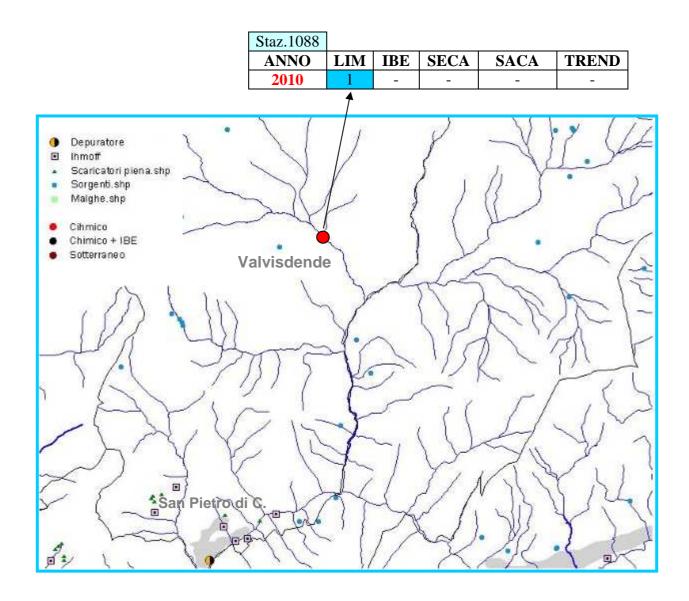
Il livello di inquinamento dei macrodescrittori durante il periodo analizzato permane sempre all'interno della classe 2 anche se con valori, soprattutto nel 2008, piuttosto prossimi al passaggio alla categoria inferiore (livello 3). Il LIM nell'anno 2010 ha presentato un valore più alto (410) rispetto agli anni precedenti.



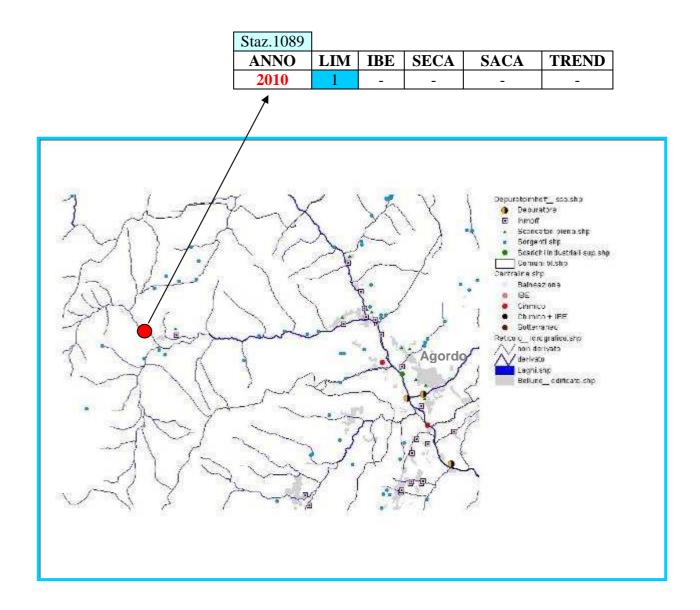
La qualità del torrente Sonna non mostra variazioni significative nel corso degli anni analizzati; a penalizzare il risultato complessivo era il dato di IBE che continuava a posizionarsi in classe III (sufficiente). Per questo motivo questa stazione si pone come uno dei punti più critici dell'intera provincia. Il livello di inquinamento da macrodescrittori rimane comunque buono (2). Il punteggio è superiore nel Colmeda pur attestandosi sempre al livello 2. Per quest'ultima stazione, di nuova istituzione non è possibile definire un trend.


La qualità del torrente Tesa non mostra variazioni nel corso degli anni analizzati con un punteggio di LIM aumentato nel 2010 (da 340 a 440). Per il T. Funes, nuova stazione non è possibile definire un trend.

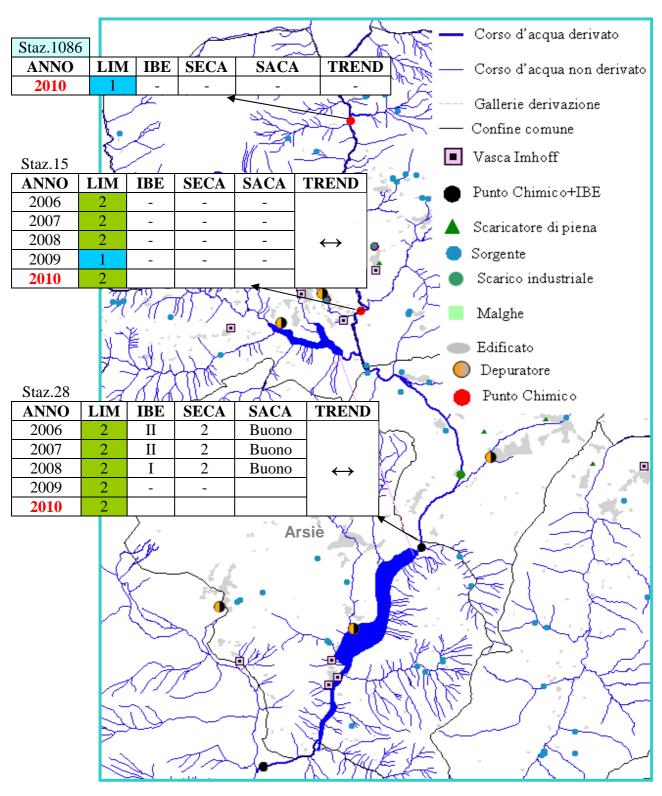
Torrente Mis



Si registra una sostanziale stabilità dei valori di LIM mentre non viene effettuato il monitoraggio della componente biologica.


Torrente Fiorentina

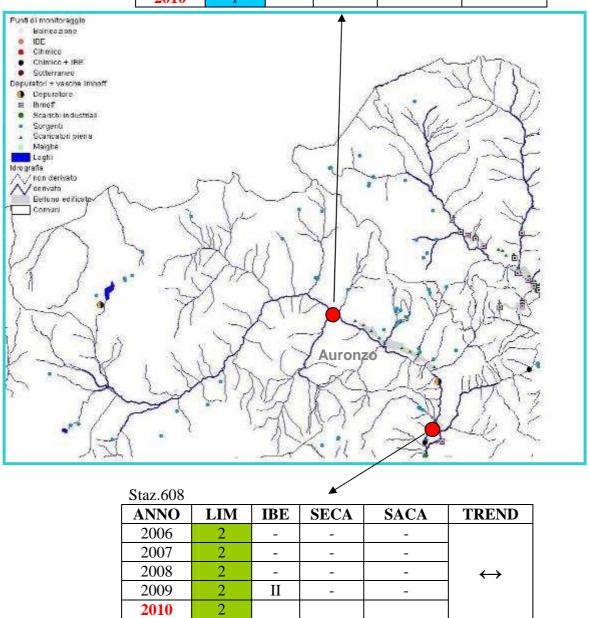
Inserito nella rete di monitoraggio per la prima volta nel 2009, presenta una qualità complessivamente buona per i macrodescrittori. Il LIM presenta un livello 2 (450).


Stazione di nuova istituzione in un territorio caratterizzato da elevata naturalità che si riflette sugli elevati livelli di LIM riscontrati (560) che non hanno eguali nelle altre stazioni della provincia.

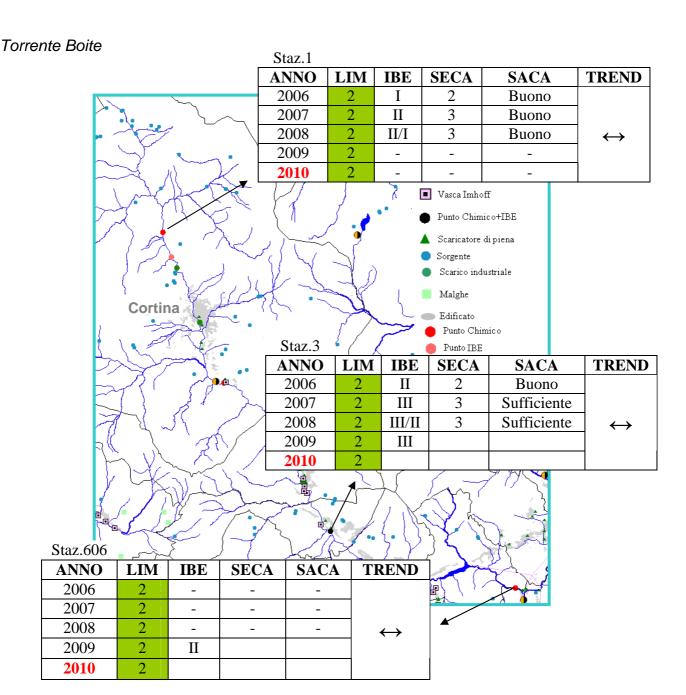
Stazione di nuova istituzione in un territorio caratterizzato da elevata naturalità; questo si riflette sugli elevati livelli di LIM riscontrati (480).

4. ACQUE SUPERFICIALI FLUENTI E DESTINATE ALLA VITA DEI PESCI

Torrente Cismon

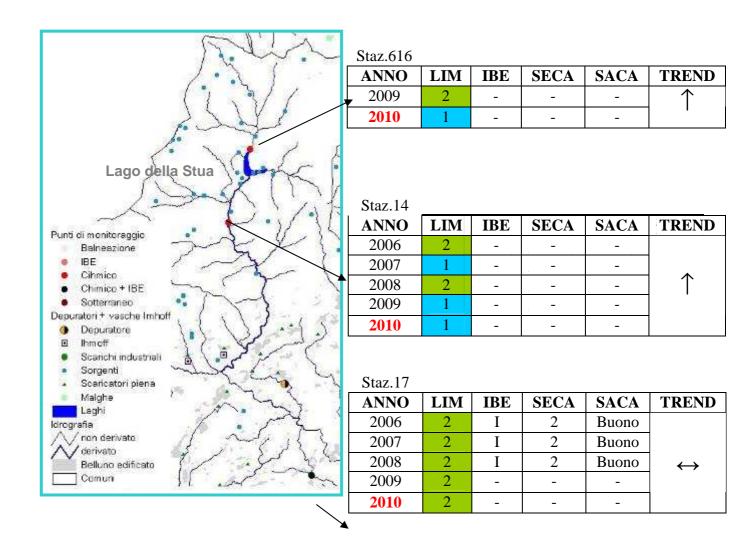


Lungo il torrente Cismon, nei punti di monitoraggio anche per l'anno 2010 è stato effettuato solamente il campionamento chimico. Dai dati sopra riportati si evidenza una situazione sostanzialmente stazionaria.

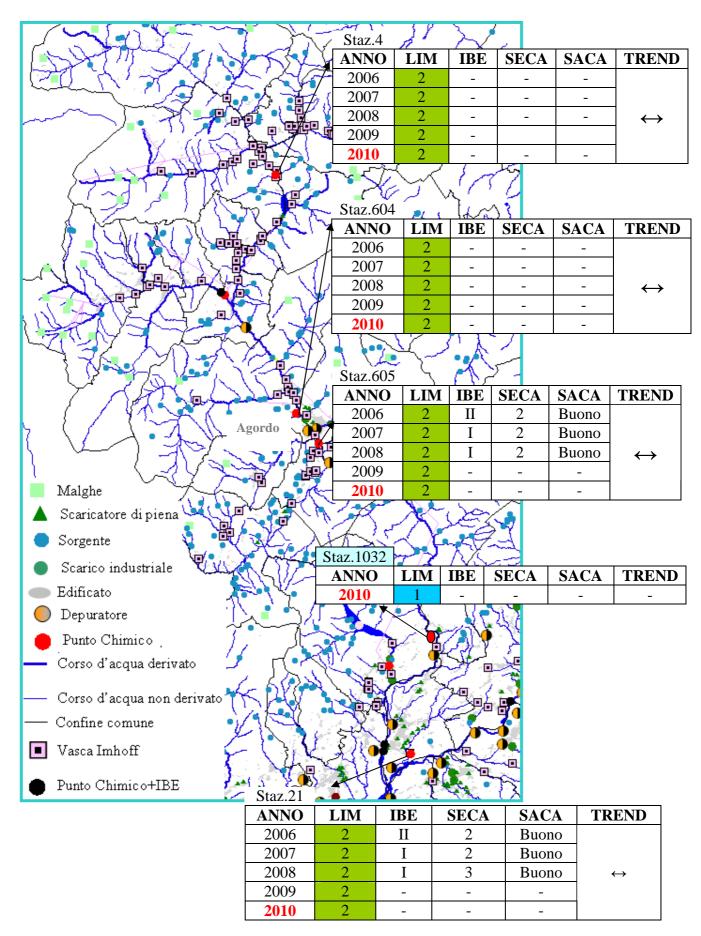

Torrente Ansiei

Staz.7

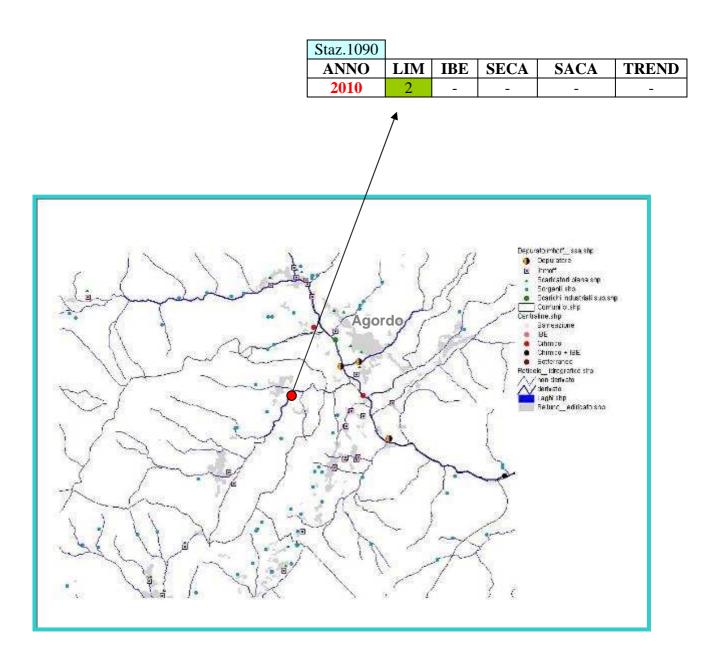
Staz. 1					
ANNO	LIM	IBE	SECA	SACA	TREND
2006	2	-	-	-	
2007	1	-	-	-	
2008	1	-	-	-	\longleftrightarrow
2009	1	-	-	-	
2010	1	-	-	-	



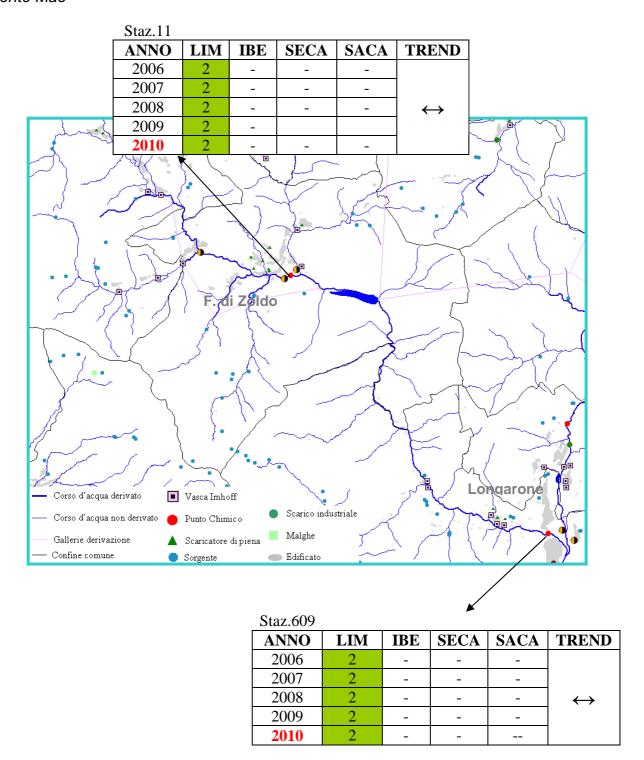
Relativamente al LIM il torrente presenta ottime condizioni ambientali a monte (staz. 7 LIM 1) mentre il punto posto a valle del lago di Santa Caterina presenta valori più bassi ma comunque buoni (Stazione 608 LIM 2). Il corso d'acqua nel tratto a monte del lago (staz. 7) risulta anche nel 2010 conforme alla vita delle specie salmonicole.


I valori del livello di inquinamento da macrodescrittori lungo il torrente Boite non variano significativamente. Il punteggio più alto (LIM 440) si ottiene sulla prima stazione (1) che sottende un territorio caratterizzato da elevata naturalità. Il tratto di Boite dalle sorgenti fino alla località Fiammes (staz. 1) risulta anche nel 2010 conforme alla vita delle specie salmonicole.

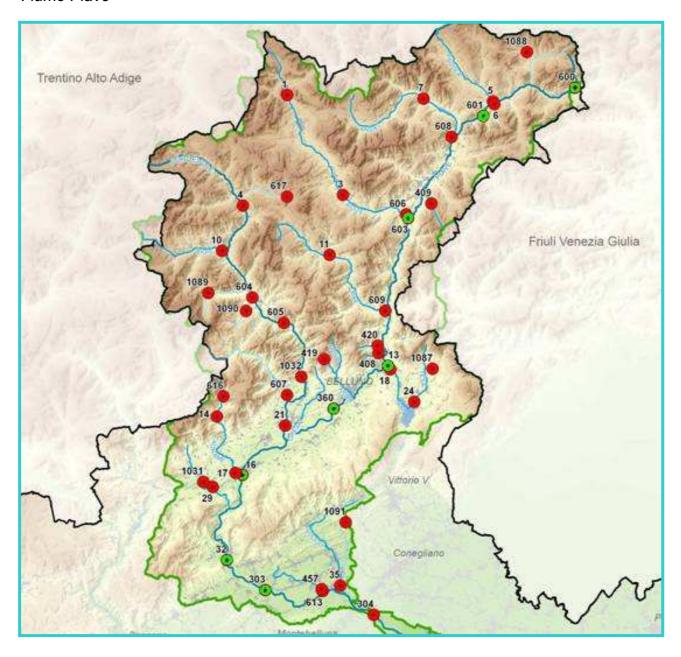
Torrente Caorame


Il Caorame è stato arricchito nel 2009 di una nuovo punto a nord del lago della Stua (staz. 616). Dai dati riportati si nota che lo stato chimico è sostanzialmente stabile con un lieve miglioramento in corrispondenza delle stazioni 616 e 14. Il Caorame risulta nel 2010 conforme alla vita dei salmonidi.

Torrente Cordevole

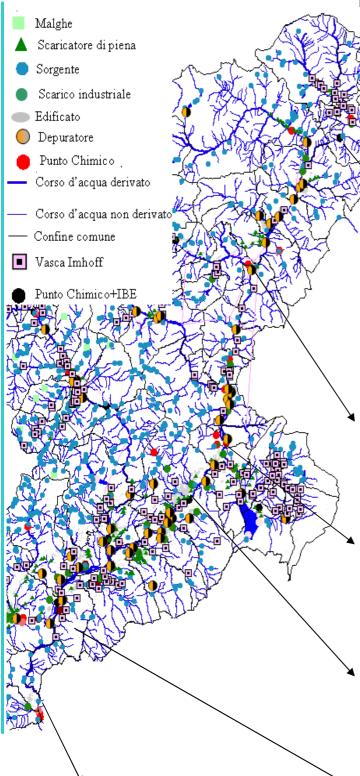

I 4 punti di campionamento localizzati lungo l'asta del torrente Cordevole presentano la medesima classe di LIM (2), il nuovo punto (1032) ubicato allo sbocco della valle del Cordevole in Val Belluna presenta un elevato valore di LIM (1) con 480 punti. Anche nel 2010 il Cordevole risulta conforme alla vita dei salmonidi.

Torrente Sarzana


Stazione di nuova istituzione. I livelli di LIM si attestano a 2 con un punteggio 420. Il Sarzana risulta conforme alla vita dei salmonidi.

Torrente Maè

I dati riportati evidenziano un livello costante di macrodescrittori, mentre l'indice biotico esteso non viene determinato in questo corso d'acqua (l'ultima verifica risale al 2004 con i valori posizionati in classe II). Anche nel 2010 il Maè risulta conforme alla vita dei salmonidi.


Fiume Piave

L'asta del Piave nel 2010 è stata monitorata in provincia di Belluno con 8 punti di campionamento (evidenziati nella figura soprastante con il colore verde chiaro). Il punto 602 in comune di Lozzo di Cadore è stato soppresso.

Fiume Piave

ANNO	LIM	IBE	SECA	SACA	TREND
2006	2	-	-	-	
2007	1	-	-	-	
2008	2	-	-	-	\leftrightarrow
2009	2	-	-	-	
2010	1	·			

١.	Staz.o		***	ara.	G + G +	TID TIN ID
	ANNO	LIM	IBE	SECA	SACA	TREND
	2006	-	-	-	-	
Ĺ	2007	-	III	-	-	
7	2008	2	-	-	-	\leftrightarrow
\rangle	2009	2	II	-	-	
Ì	2010	2				
7						

Staz.601

ANNO	LIM	IBE	SECA	SACA	TREND
2006	2	-	-	-	
2007	2	III	3	Sufficiente	
2008	2	III	3	Sufficiente	\leftrightarrow
2009	2	II	-	-	
2010	2				

Staz.603

ANNO	LIM	IBE	SECA	SACA	TREND
2006	2	II	2	Buono	
2007	2	-	-	-	
2008	2	-	-	-	\leftrightarrow
2009	2	II	-	-	
2010	2				

Staz.13

ANNO	LIM	IBE	SECA	SACA	TREND
2006	2	I	2	Buono	
2007	2	I	2	Buono	
2008	2	I	2	Buono	\leftrightarrow
2009	2	II	-	-	
2010	2				

Staz.360

ANNO	LIN	I IRE	SECA	SACA	TREND
2006	2	II	2	Buono	
2007	2	I	2	Buono	
2008	2	II	2	Buono	\leftrightarrow
2009	2	-	-	-	
2010	2				

Staz.16

ANNO	LIM	IBE	SECA	SACA	TREND
2006	2	II	2	Buono	
2007	2	I	2	Buono	
2008	2	II	2	Buono	\leftrightarrow
2009	2	-	-	-	
2010	2	-	-	-	

Staz.32

ANNO	LIM	IBE	SECA	SACA	TREND
2006	2	II	2	Buono	
2007	2	II	2	Buono	
2008	2	I	2	Buono	\leftrightarrow
2009	2	II	-	-	
2010	2	-	-	-	

Dall'analisi dei dati riportati nelle precedenti tabelle emerge che la situazione complessiva del fiume Piave è mediamente buona. Per il LIM il punteggio più alto viene registrato presso il punto 600 (Sappada) mentre si evidenzia in alcune stazioni (6, 32 e 602) un punteggio basso per la presenza di *Escherichia coli*. Il Fiume Piave risulta anche nel 2010 conforme alla vita dei salmonidi.

5. ACQUE SUPERFICIALI FLUENTI DESTINATE ANCHE ALL'USO IDRO POTABILE

Torrente Anfela (Stazione 409)

Il torrente Anfela si estende all'interno del territorio del comune di Pieve di Cadore, la presa dell'acquedotto e di conseguenza il punto di campionamento è subito a valle di un affluente minore.

Dalle analisi svolte nel corso dell'anno 2010 l'acqua del torrente Anfela è risultata sempre idonea al consumo umano rispettando la classificazione della tabella A2 della D.G.R. n. 7247 del 19/12/1989; pertanto prima di poter essere consumata deve subire un trattamento chimico e fisico normale nonché una disinfezione. Il LIM ottiene un punteggio di 520 attestandosi su di un livello 1.

Torrente Medone (Stazione 419)

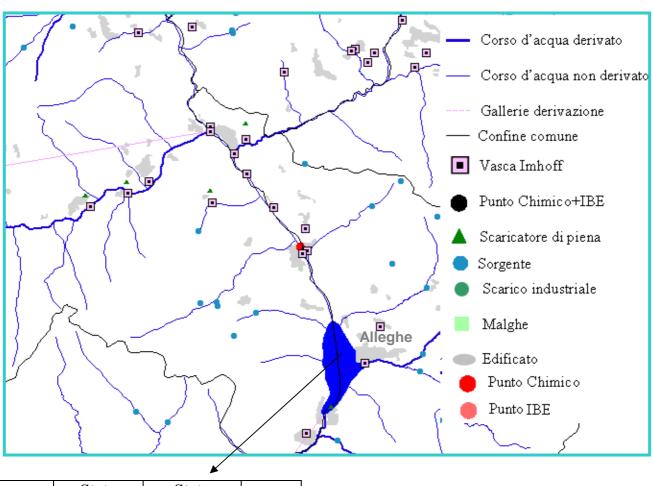
Il torrente Medone si estende all'interno del territorio del comune di Belluno, la presa dell'acquedotto e di conseguenza il punto di campionamento è all'interno della Val Medone.

Dalle analisi svolte nel corso dell'anno 2010, l'acqua del torrente Medone è risultata idonea al consumo umano rispettando la classificazione della tabella A2 della D.G.R. n. 7247 del 19/12/1989; pertanto prima di poter essere consumata deve subire un trattamento chimico e fisico normale nonché una disinfezione. Il LIM ottiene un punteggio di 480 attestandosi su di un livello 1.

Rio delle Salere (Stazione 408)

Il rio delle Salere si estende all'interno del territorio del comune di Ponte nelle Alpi, la presa dell'acquedotto e di conseguenza il punto di campionamento è subito a monte dell'abitato di Pian di Vedoia.

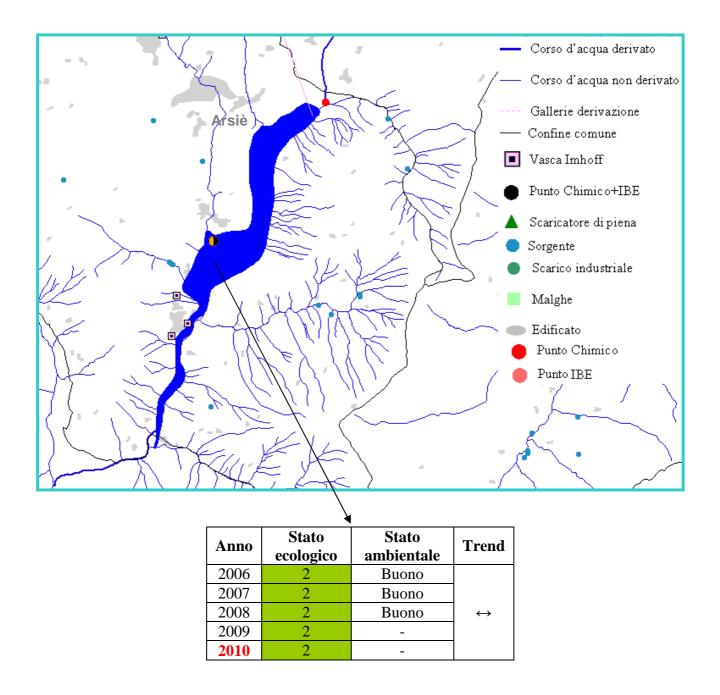
Dalle analisi svolte nel corso dell'anno 2010 l'acqua del rio delle Salere è risultata sempre idonea al consumo umano rispettando la classificazione della tabella A3 della D.G.R. n. 7247 del 19/12/1989; pertanto prima di poter essere consumata deve subire un trattamento chimico e fisico spinto, affinazione e disinfezione. Il LIM ottiene un punteggio di 520 attestandosi su di un livello 1.


Rio dei Frari (Stazione 420)

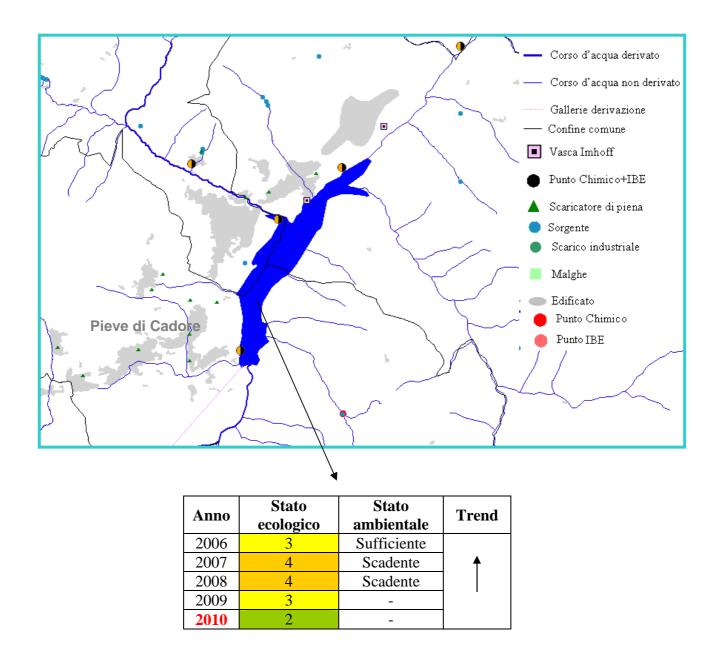
Il rio dei Frari si estende all'interno del territorio del comune di Ponte nelle Alpi, la presa dell'acquedotto e di conseguenza il punto di campionamento è nei pressi del ponte del Bus.

Dalle analisi svolte nel corso dell'anno 2010, l'acqua del rio dei Frari è risultata idonea al consumo umano rispettando la classificazione della tabella A2 della D.G.R. n. 7247 del 19/12/1989; pertanto prima di poter essere consumata deve subire un trattamento chimico e fisico normale nonché una disinfezione. Il LIM ottiene un punteggio di 480 attestandosi su di un livello 1.

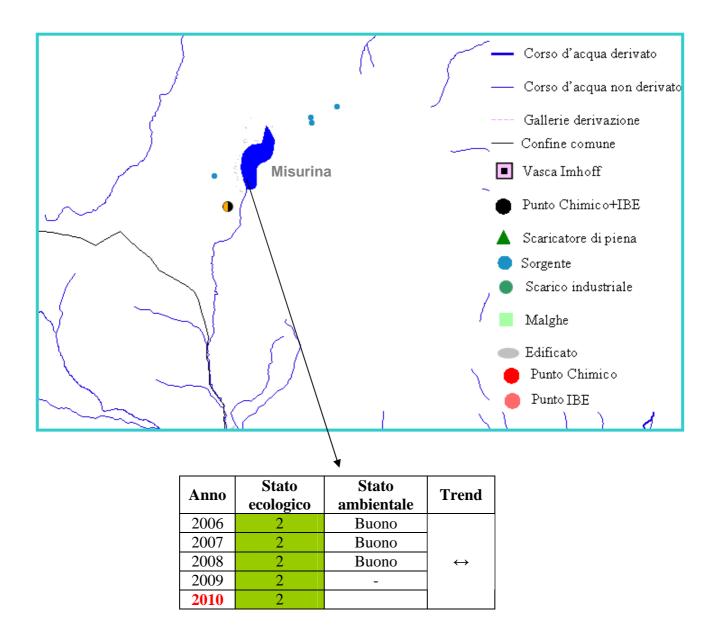
6. ACQUE SUPERFICIALI LACUSTRI


Lago di Alleghe

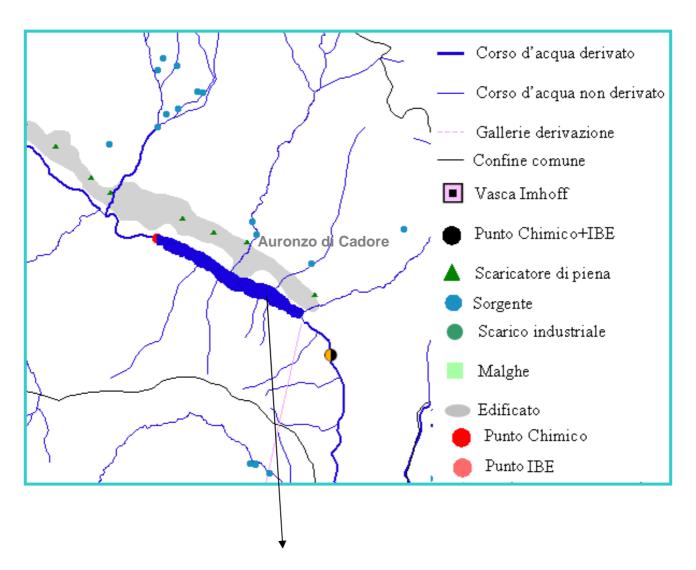
Anno	Stato ecologico	Stato ambientale	Trend
2006	3	Sufficiente	
2007	3	Sufficiente	
2008	4	Scadente	\longleftrightarrow
2009	4	-	
2010	3	-	


Lo stato ecologico (SEL) del lago di Alleghe è in classe 3 in miglioramento rispetto all'anno precedente; complessivamente la situazione appare stazionaria.

Lago del Corlo


Sulla base del monitoraggio effettuato attraverso l'analisi dei parametri macrodescrittori non si rilevano particolari criticità per il lago del Corlo che anche nell'anno 2010 risulta in classe 2 del SEL.

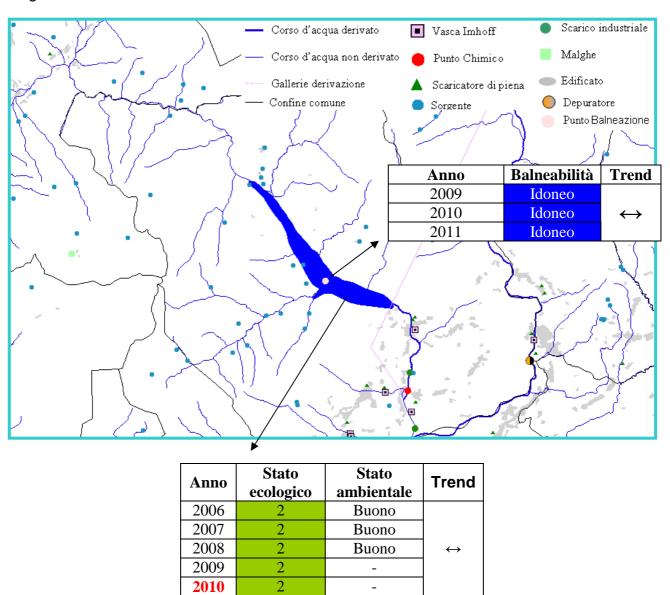
Lago di Centro Cadore


Lo stato ecologico è nel 2010 in classe 2 (in ulteriore miglioramento rispetto al 2008 e al 2009); fattore più critico dello stato di questo lago la trasparenza.

Lago di Misurina

Il lago di Misurina ha uno stato ecologico (SEL) ricadente in classe 2 mantenendo una elevata qualità delle proprie acque nel corso del periodo di indagine.

Lago di Santa Caterina



Anno	Stato ecologico	Stato ambientale	Trend
2006	2	Buono	
2007	2	Buono	
2008	3	Sufficiente	1
2009	3	-	
2010	2		

Il lago di Santa Caterina si riporta ai valori ante 2007 e cioè nella classe 2 per ciò che concerne lo stato ecologico. Il parametro più critico è la trasparenza.


7. ACQUE SUPERFICIALI LACUSTRI DESTINATE ANCHE ALLA BALNEAZIONE

Lago del Mis

Il lago presenta un unico punto indagato per la balneazione e negli anni riportati in tabella è sempre risultato balneabile. Lo stato ecologico rimane anche nel 2010 in classe 2.

Lago di Santa Croce

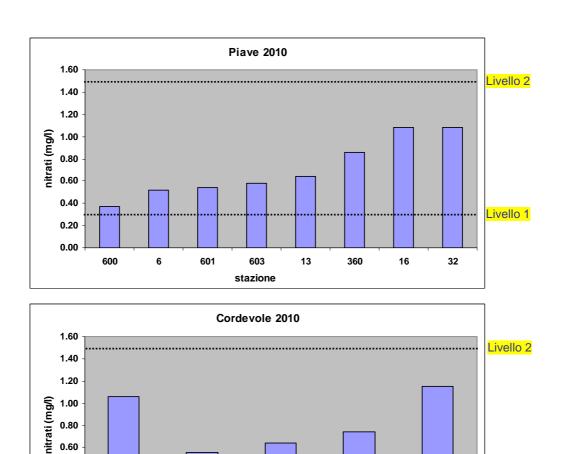
Il lago è risultato negli ultimi anni sempre balneabile. Lo stato ecologico resta in classe 3 anche quest'anno; causa principale il parametro trasparenza.

8. LA SITUAZIONE DEI NITRATI IN PROVINCIA DI BELLUNO

I nitrati rappresentano l'ultimo stadio di ossidazione dei composti azotati provenienti dai processi di decomposizione biologica delle sostanze organiche. La presenza di nitrati nelle acque è dovuta principalmente agli allevamenti zootecnici, all'impiego di fertilizzanti, agli scarichi di reflui civili e ad alcuni scarichi industriali. Lo studio del livello dei nitrati nelle acque superficiali consente, quindi, di valutare l'incidenza di queste fonti.

Nelle tabelle che seguono si riportano i valori in mg/l dei 75° percentile dell'azoto nitrico registrati dal 2008 al 2010 nei corsi d'acqua monitorati in Provincia.

				anno	
	Stazione	Comune	2008	2009	2010
	600	Sappada	0.44	0.37	0.37
	6	S. Stefano	-	0.56	0.52
	601	S. Stefano	0.62	1.18	0.54
PIAVE	603	Perarolo	0.87	0.85	0.58
111112	13	Ponte nelle Alpi	0.71	1.13	0.64
	360	Limana	1.21	0.96	0.86
	16	Lentiai	1.06	1.07	1.08
	32	Alano	1.55	1.28	1.08
	4	Alleghe	0.58	0.45	1.06
CORREGIO	604	Agordo	0.66	0.61	0.56
CORDEVOLE	605	La Valle Agordina	0.68	0.65	0.64
	1032 21	Sedico	0.70	- 0.70	0.74
		Sedico		0.70	1.15
BOITE	1	Cortina	0.44	0.42	0.44
BOITE	3	Borca di Cadore	0.61	0.62	0.53
	606	Perarolo di Cadore	0.80	0.61	0.81
CAORAME	616 14	Cesiomaggiore	1.01	0.63 0.83	0.62 0.78
CAURAME	17	Cesiomaggiore Feltre	1.01	0.83	0.78
				•	
CISMON	1086 15	Sovramonte Lamon	0.97	0.93	0.65 0.81
CISMON	28	Fonzaso	1.28	1.35	1.13
	7	Auronzo di Cadore	0.53	0.60	0.49
ANSIEI	608	Lozzo di Cadore	0.99	0.80	0.56
	11	Forno di Zoldo	0.67	0.47	0.48
MAÈ	609	Longarone	0.65	0.60	1.04
PADOLA	5	S. Stefano	0.54	0.61	0.61
BIOIS	10	Ponte nelle Alpi	0.78	1.09	0.84
RAI	18	Feltre	1.50	1.07	0.99
TESA	24	Pieve di Cadore	0.72	0.69	0.68
SONNA	29	Ponte nelle Alpi	2.25	2.13	2.50
RUI DELLE SALERE	408	Selva di Cadore	0.95	0.81	0.84
ANFELA	409	Chies d'Alpago	0.44	0.39	0.42
MEDONE	419	Taibon Agordino	0.99	0.92	0.94
RIO FRARI	420	S. Stefano	0.79	0.71	0.77
MIS	607	Ponte nelle Alpi	0.65	0.59	0.62
FIORENTINA	617	Feltre	-	0.44	0.38
COLMEDA	1031	Pieve di Cadore	-	-	1.53
FUNES	1087	Ponte nelle Alpi	-	_	0.64
LONDO	1088	Selva di Cadore	-	-	0.17
BORDINA	1089	Chies d'Alpago	-	-	0.50
SARZANA	1090	Taibon Agordino	-	<u>-</u>	0.63
SANLANA	1070	Taiboli Agolullo	-	-	0.03


Tab. 12. Nitrati (mg/l) espressi come 75° percentil e.

Dalla tabella emerge una certa variabilità dei valori dei nitrati nel tempo in molte stazioni, non sempre riconducibile all'incertezza analitica; in parte dei casi si registra comunque un progressivo miglioramento negli anni.

Nel 2010, rispetto al 2009, si è rilevato un peggioramento apprezzabile solo in 5 stazioni, e precisamente nelle 4 e 21 (Cordevole), 606 (Boite), 609 (Maè) e 29 (Sonna).

In quasi tutte le stazioni i livelli si mantengono all'interno del livello 2 (che, facendo un'estrapolazione del singolo parametro dalla tabella 1, può essere considerato un livello "Buono"), tranne nei casi evidenziati in rosso, nei quali i valori si attestano all'interno del livello 3 ("Sufficiente") e nel caso del torrente Londo, nel quale il dato ottenuto ricade all'interno del livello 1 ("Elevato").

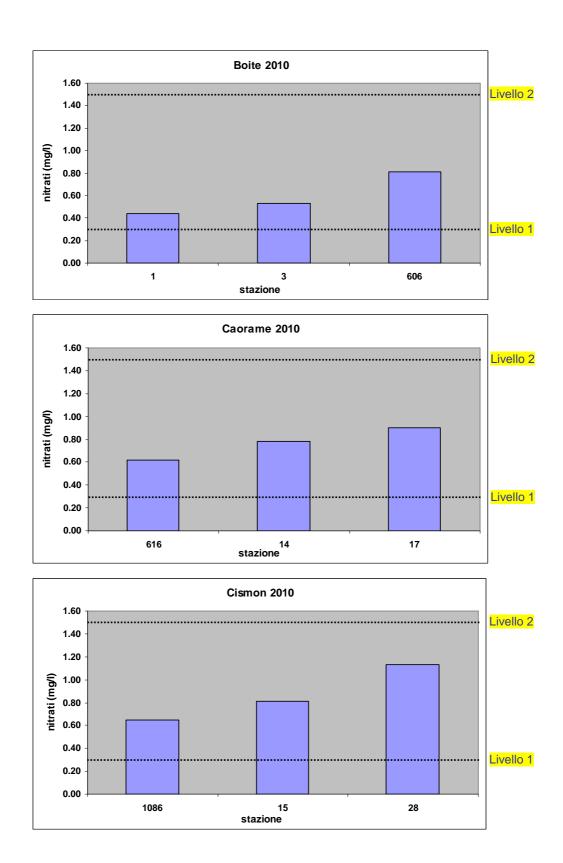
Si riporta nei grafici che seguono l'andamento dei nitrati, espressi come 75° percentile, nel 2010 lungo l'asta del fiume Piave e dei torrenti Cordevole, Boite, Caorame e Cismon.

605

stazione

1032

21


0.40

0.20

4

604

Livello 1

I grafici evidenziano un generale peggioramento del livello dei nitrati lungo l'asta dei corsi d'acqua, legato probabilmente ad un aumento delle pressioni antropiche; unica eccezione è costituita dal torrente Cordevole, che, nonostante solitamente segua tale andamento, in una occasione ha fatto registrare un dato anomalo nella stazione 4. In tutti i casi i valori si attestano, comunque, all'interno del livello 2 ("Buono").

9. CONCLUSIONI

Il monitoraggio effettuato da ARPAV nel corso del 2010 ha evidenziato situazioni differenziate nel reticolo idrografico bellunese con zone di elevata qualità e corpi idrici con necessità di miglioramento.

L'attuale stato di attuazione della normativa non consente un giudizio definitivo dei corpi idrici provinciali. Il confronto con quanto rilevato negli anni precedenti attraverso i livelli di LIM consente tuttavia alcune considerazioni.

Relativamente agli specifici programmi di verifica della destinazione d'uso dei corpi idrici si conferma la buona situazione stazionaria dei due laghi controllati ai fini della balneazione, le condizioni per la vita delle specie salmonicole nei tratti designati e il buono stato dei corpi idrici soggetti ad attingimento per fini potabili.

Ufficio Supporto Operativo

Dr. Antonio Cavinato

Dr.ssa Antonella De Boni

Visto:

II Direttore Provinciale

Dr. Rodolfo Bassan

ARPAV
Agenzia Regionale
per la Prevenzione e
Protezione Ambientale
del Veneto
Direzione Generale
Via Matteotti, 27
35137 Padova
Italy
Tel. +39 049 823 93 01

Fax +39 049 660 966 E-mail: urp@arpa.veneto.it

E-mail certificata: protocollo@arpav.it

www.arpa.veneto.it