

Indagine sulla qualità dell'aria comune di Belluno località Castion 3 luglio – 5 settembre 2012

ARPAV Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto

Dipartimento Provinciale di Belluno Servizio Sistemi Ambientali Ufficio Reti di Monitoraggio

Via Tomea 5 32100 BELLUNO BL

Tel. +39-0437-935511 Fax.+39-0437-30340

E-mail: dapbl@arpa.veneto.it

Belluno, ottobre 2012

Indagine sulla qualità dell'aria a Belluno località Castion

3 luglio - 5 settembre 2012

1 - Premessa

Il Dipartimento A.R.P.A.V. di Belluno, in accordo con il comune di Belluno, ha effettuato il monitoraggio della qualità dell'aria in località Castion nel periodo 3 luglio - 5 settembre 2012. La presente relazione illustra in modo sintetico i risultati rilevati in riferimento ai limiti di legge vigenti e ne offre una breve rappresentazione grafica, per meglio evidenziare l'andamento degli inquinanti nel corso dell'indagine.

Per il monitoraggio è stato utilizzato un laboratorio mobile attrezzato con specifiche apparecchiature aventi le caratteristiche tecnico analitiche di seguito descritte. Contestualmente è stato rilevato il traffico veicolare per mezzo di una apposita apparecchiatura radar.

2 - Localizzazione del monitoraggio

Il sito di indagine, indicato nelle figure sottostanti ha coordinate geografiche GBO 171750143; 5113070.

Figura 1: posizionamento del mezzo mobile a Castion

Figura 2: localizzazione del comune di Belluno in provincia di Belluno

3 - Parametri monitorati

I dati del monitoraggio sono riferiti agli inquinanti di seguito indicati.

Mezzo mobile

- Polveri (PM10);
- Monossido di carbonio (CO);
- Ossidi d'azoto, in particolare biossido d'azoto (NO₂);
- Biossido di zolfo (SO₂);
- Ozono (O₃);
- Benzene (C₆H₆) .

4 - Tecniche analitiche

Per gli inquinanti tradizionali monitorati le tecniche di misura corrispondono alle specifiche dettate dalla normativa italiana relative ai sistemi analitici in continuo.

Tali sistemi analitici si riconducono a:

- Analisi per il controllo delle polveri (PM10): determinazione per assorbimento della radiazione β previo frazionamento;
- Analisi per il controllo del monossido di carbonio: determinazione per assorbimento I.R.;
- Analisi per il controllo degli ossidi d'azoto, in particolare del biossido d'azoto: determinazione per emissione a chemiluminescenza;
- Analisi per il controllo dell'anidride solforosa: determinazione per emissione a fluorescenza;
- Analisi per il controllo dell'ozono: determinazione per assorbimento U.V.;

 Analisi per il controllo dei composti organici, in particolare benzene: determinazione in gascromatografia capillare su fiamma d'idrogeno, previo arricchimento del campione d'aria su specifiche trappole di carbone grafitato e successivo desorbimento termico.

5 - Caratteristiche degli inquinanti monitorati

Polveri (PM10)

Materiale particolato (PM) è il termine usato per indicare presenze solide o di aerosol in atmosfera, generalmente formate da agglomerati di diverse dimensioni, composizione chimica e proprietà, derivanti sia da fonti antropiche che naturali. Le differenti classi dimensionali conferiscono alle particelle caratteristiche fisiche e geometriche assai varie. Le polveri PM10 rappresentano il particolato che ha un diametro inferiore a 10 μm, mentre le PM2,5, che costituiscono in genere circa il 60-90% delle PM10, rappresentano il particolato che ha un diametro inferiore a 2,5 μm.

Vengono dette polveri inalabili quelle in grado di penetrare nel tratto superiore dell'apparato respiratorio dal naso alla laringe.

Parte delle particelle che costituiscono le polveri atmosferiche è emessa come tale da diverse sorgenti naturali ed antropiche (particelle primarie); parte invece deriva da una serie di reazioni chimiche e fisiche che avvengono nell'atmosfera (particelle secondarie).

L'abbattimento e/o l'allontanamento delle polveri è legato in gran parte alla meteorologia. Pioggia e neve abbattono le particelle, il vento le sposta anche sollevandole, mentre le dinamiche verticali connesse ai profili termici e/o eolici le allontanano.

Le più importanti sorgenti naturali sono così individuate:

- incendi boschivi;
- polveri al suolo risollevate e trasportate dal vento;
- aerosol biogenico (spore, pollini, frammenti vegetali, ecc.);
- emissioni vulcaniche;
- aerosol marino.

Le più rilevanti sorgenti antropiche sono:

- processi di combustione di legno, derivati del petrolio, residui agricoli;
- emissioni prodotte in vario modo dal traffico veicolare (emissioni dei gas di scarico, usura dei pneumatici, dei freni e del manto stradale);
- processi industriali;
- emissioni prodotte da altri macchinari e veicoli (mezzi di cantiere e agricoli, aeroplani, treni, ecc.).

Una volta emesse, le polveri PM10 possono rimanere in sospensione nell'aria per circa dodici ore, mentre le particelle a diametro più sottile, ad esempio PM1, possono rimanere in circolazione per circa un mese.

Le polveri sottili nei centri urbani sono prodotte principalmente da fenomeni di combustione derivanti dal traffico veicolare e dagli impianti di riscaldamento.

Il particolato emesso dai camini di altezza elevata può essere trasportato dagli agenti atmosferici anche a grandi distanze. Per questo motivo parte dell'inquinamento di fondo riscontrato in una determinata città può provenire da una fonte situata anche lontana dal centro urbano. Nei centri urbani l'inquinamento da PM10, che sono le più pericolose per la salute, è essenzialmente dovuto al traffico veicolare ed al riscaldamento domestico.

Le dimensioni delle particelle in sospensione rappresentano il parametro principale che caratterizza il comportamento di un aerosol. Dato che l'apparato respiratorio è come un canale che si ramifica dal punto di inalazione naso o bocca, sino agli alveoli con diametro sempre decrescente, si può immaginare che le particelle di dimensioni maggiori vengono trattenute nei primi stadi, mentre quelle sottili penetrano sino agli alveoli. Il rischio determinato dalle particelle è dovuto alla deposizione che avviene lungo tutto l'apparato respiratorio, dal naso agli alveoli.

La deposizione si ha quando la velocità delle particelle si annulla per effetto delle forze di resistenza inerziale alla velocità di trascinamento dell'aria, che decresce dal naso sino agli alveoli. Questo significa che procedendo dal naso o dalla bocca attraverso il tratto tracheo-bronchiale sino agli alveoli, diminuisce il diametro delle particelle che penetrano e si depositano.

Monossido di Carbonio (CO)

Il monossido di carbonio (CO) è un gas incolore, inodore ed insapore prodotto dai processi di combustione incompleta di materiali contenenti carbonio. Il CO emesso dai veicoli subisce nell'atmosfera poche reazioni, essendo notevolmente stabile ed avendo un tempo di permanenza di quattro mesi circa. La sua concentrazione decresce progressivamente all'aumentare della distanza dalle sorgenti di emissione, cioè principalmente dalle strade adibite a circolazione autoveicolare.

Le fonti più importanti di CO sono il traffico motorizzato, gli insediamenti produttivi e le abitazioni. La sua produzione varia in relazione al tipo di veicolo, essendo maggiore nei motori a benzina rispetto ai diesel che funzionano con una maggiore quantità di aria, realizzando così una combustione più completa. La produzione di questo gas dipende inoltre dal regime del motore, risultando maggiore in avviamento, in decelerazione ed al minimo, mentre è minore a velocità di crociera. Nel traffico urbano quindi la quantità di CO prodotta dai veicoli è relativamente elevata a causa delle frequenti decelerazioni ed accelerazioni, nonché dalle soste con il motore al minimo. La concentrazione di CO nei gas di scarico è inoltre influenzata dal sistema di alimentazione del motore adottato, dalla sua regolazione e dalla presenza o meno dei dispositivi di limitazione delle emissioni. Il progressivo rinnovo del parco autoveicolare ed i provvedimenti di fluidificazione del traffico hanno portato, a parità di veicoli circolanti, ad una riduzione delle emissioni.

Biossido di Azoto (NO₂)

Pur essendo presenti in atmosfera diverse specie di ossidi di azoto, per l'inquinamento dell'aria si fa riferimento principalmente al monossido di azoto (NO), al biossido (NO₂) ed alla loro somma pesata.

La principale fonte antropogenica di ossidi di azoto è la combustione ad alta temperatura, come quella dei motori dei veicoli: l'elevata temperatura che si origina durante lo scoppio provoca la reazione fra l'azoto dell'aria e l'ossigeno formando monossido di azoto.

La quantità prodotta cresce con la temperatura di combustione e con la velocità di raffreddamento dei gas prodotti, che impedisce la decomposizione in azoto ed ossigeno. Le miscele "ricche", cioè con poca aria, danno luogo ad emissioni con limitate concentrazioni di monossido d'azoto a causa della bassa temperatura raggiunta nella camera di combustione, ma originano elevate emissioni di idrocarburi e monossido di carbonio per effetto della combustione incompleta. Miscele "povere", cioè con elevata quantità di aria, determinano maggiori concentrazioni di NO nelle emissioni, e limitano una buona resa del motore a causa dell'eccesso di aria che raffredda la camera di

combustione. Quando i fumi vengono mescolati con aria allo scarico si forma una significativa quantità di biossido d'azoto per ossidazione del monossido ad opera dell'ossigeno. Altre importanti fonti di ossidi d'azoto sono gli insediamenti produttivi, gli impianti domestici e le pratiche agricole che utilizzano fertilizzanti azotati a causa dei processi ossidativi dell'ammoniaca.

Ossidi di Zolfo (SO_X)

Gli ossidi di zolfo presenti in atmosfera sono le anidridi solforosa (SO_2) e solforica (SO_3) con predominanza della prima; questi composti vengono anche indicati con il termine comune SO_x . L'anidride solforosa o biossido di zolfo è un gas incolore, irritante, non infiammabile, molto solubile in acqua e dall'odore pungente. Dato che è più pesante dell'aria tende a stratificare nelle zone più basse.

Il biossido di zolfo si forma nel processo di combustione per ossidazione dello zolfo presente nei combustibili fossili quali carbone, olio combustibile e gasolio. Le fonti di emissione principali sono legate alla produzione di energia, agli impianti termici, ai processi industriali ed al traffico. L'anidride solforosa è il principale responsabile delle "piogge acide", perché tende a trasformarsi in anidride solforica e, in presenza di umidità, in acido solforico. In particolari condizioni meteorologiche e in presenza di quote di emissioni elevate può diffondersi nell'atmosfera e interessare territori situati anche a grandi distanze.

Ozono (O₃)

L'ozono è un gas irritante di colore bluastro, costituito da molecole instabili formate da tre atomi di ossigeno; queste molecole si scindono facilmente liberando ossigeno molecolare (O_2) ed un atomo di ossigeno estremamente reattivo

$$O_3 \rightarrow O_2 + O$$

Per queste sue caratteristiche l'ozono è quindi un energico ossidante in grado di demolire sia materiali organici che inorganici.

L'ozono presente nella bassa troposfera è principalmente il prodotto di una serie complessa di reazioni chimiche di altri inquinanti presenti nell'atmosfera, detti precursori, nelle quali interviene l'azione dell'irraggiamento solare. I principali precursori coinvolti sono gli ossidi di azoto ed i composti organici volatili (COV).

La produzione di ozono in troposfera per reazione chimica ha inizio con la fotolisi del biossido di azoto, ovvero la scissione di questa molecola da parte della radiazione solare, hv, con lunghezza d'onda inferiore a 430 nm, in monossido d'azoto ed ossigeno atomico:

$$NO_2 + hv \rightarrow NO + O$$
 (1)

seguita dalla combinazione dell'ossigeno atomico con ossigeno atmosferico:

$$0 + 0_2 \rightarrow 0_3$$
 (2)

Una volta prodotto l'ozono può a sua volta reagire con il monossido di azoto formatosi dalla reazione (1) per riformare il biossido di azoto di partenza:

$$O_3 + NO \rightarrow NO_2 + O_2$$
 (3)

L'ozono viene quindi prodotto dalla reazione (2) e successivamente rimosso dalla reazione (3) in un ciclo a produzione teoricamente nulla.

In troposfera sono però presenti specie molto reattive chiamate "radicali perossialchilici", convenzionalmente indicati come RO₂, prodotte dalla ossidazione di idrocarburi ed altri composti organici volatili. Il monossido di azoto reagisce con questi radicali secondo la reazione generale:

$$NO + RO_2 \rightarrow NO_2 + RO$$
 (4)

In presenza di radicali perossialchilici la reazione (4) risulta competitiva rispetto alla reazione (3) la quale non ha modo di avvenire, essendo uno dei reagenti, il monossido di azoto, rimosso dalla reazione (4); l'ozono prodotto dalla sequenza di reazione (1) e (2) può guindi accumularsi in atmosfera.

I precursori coinvolti nel ciclo dell'ozono possono essere di origine antropogenica, a seguito di combustioni ed evaporazione di solventi organici, o derivare da sorgenti naturali di emissione quali incendi e vegetazione.

Nei centri urbani gli inquinanti coinvolti nella produzione di ozono derivano principalmente dal traffico veicolare. Nella complessa serie di reazioni coinvolgenti NO_X e composti organici volatili, i vari COV hanno effetti differenti; tra i più reattivi vanno ricordati il toluene, l'etene, il propene e l'isoprene. Dopo l'emissione i precursori si disperdono nell'ambiente in maniera variabile a seconda delle condizioni atmosferiche. Affinché dai precursori, con l'azione della radiazione solare, si formi ozono in quantità apprezzabili, occorre un certo periodo di tempo che può variare da poche ore a giorni. Questo fa sì che le concentrazioni di O₃ in un dato luogo non siano linearmente correlate alle quantità di precursori emessi nella zona considerata. Inoltre, visto il tempo occorrente per la formazione di ozono, le masse d'aria contenenti O₃, COV ed NO_X possono percorrere notevoli distanze, anche centinaia di chilometri, determinando effetti in aree diverse da quelle di produzione. Da ciò deriva che il problema dell'inquinamento da ozono non può essere valutato strettamente su base locale, ma deve essere considerato su ampia scala. Le concentrazioni di ozono dipendono quindi notevolmente dalle condizioni atmosferiche; le reazioni che portano alla sua formazione sono reazioni fotochimiche e quindi le concentrazioni dell'inquinante aumentano con il crescere della radiazione solare, mentre diminuiscono con l'aumentare della nuvolosità. La conseguenza è che i valori massimi di concentrazione di ozono si registrano nel tardo pomeriggio estivo.

Benzene (C₆H₆)

Il benzene è un idrocarburo aromatico strutturato ad anello esagonale ed è costituito da sei atomi di carbonio e sei atomi di idrogeno. Anche conosciuto come benzolo, rappresenta la sostanza aromatica con la struttura molecolare più semplice e per questo lo si può definire il composto-base della classe degli idrocarburi aromatici.

Il benzene a temperatura ambiente si presenta come un liquido incolore che evapora all'aria molto velocemente. E' una sostanza altamente infiammabile.

La sua presenza nell'ambiente deriva sia da processi naturali che da attività umane. Le fonti naturali forniscono un contributo relativamente esiguo rispetto a quelle antropogeniche e sono dovute essenzialmente agli incendi boschivi. La maggior parte del benzene presente nell'aria è invece un sottoprodotto delle attività umane.

Le principali cause di esposizione al benzene sono le combustioni incomplete.

Per quanto riguarda l'apporto dovuto al traffico, predominano le emissioni dei mezzi a benzina rispetto ai diesel. Per i veicoli a benzina, circa il 95% dell'inquinante deriva dai

gas di scarico, mentre il restante 5% dall'evaporazione del carburante dal serbatoio e dal carburatore durante le soste e i rifornimenti.

Tabella 1: Sorgenti emissive dei principali inquinanti (* = Inquinante Primario, ** = Inquinante Secondario).

Inquinanti	Principali sorgenti di emissione
Particolato Fine*/** PM10	Traffico autoveicolare on road e off road, impianti riscaldamento, centrali di potenza, impianti industriali, fenomeni di risollevamento
Monossido di Carbonio* CO	Traffico autoveicolare on road e off road (processi di combustione incompleta dei combustibili fossili), impianti riscaldamento, centrali di potenza, impianti industriali
Biossido di Azoto* NO ₂	Impianti di riscaldamento, traffico autoveicolare on road e off road, centrali di potenza, attività industriali (processi di combustione con ossigeno e azoto atmosferici)
Biossido di Zolfo* SO ₂	Impianti riscaldamento, centrali di potenza, combustione di prodotti organici di origine fossile contenenti zolfo (gasolio, carbone, oli combustibili), veicoli diesel
Ozono** O ₃	Non ci sono significative sorgenti di emissione antropiche in atmosfera
Idrocarburi non Metanici* (IPA, Benzene)	Traffico autoveicolare on road off road, evaporazione dei carburanti, alcuni processi industriali, impianti di riscaldamento

6 - Il quadro normativo

L'esigenza di salvaguardare la salute e l'ambiente dai fenomeni di inquinamento atmosferico ha ispirato un corpo normativo volto alla definizione di:

- valori limite degli inquinanti per la protezione della salute umana e dell'ambiente;
- livelli critici per la protezione dei recettori naturali e degli ecosistemi;
- valori obiettivo per la protezione della salute umana e dell'ambiente;
- soglie di informazione e di allarme per la protezione della salute umana;
- obiettivi a lungo termine per la protezione della salute umana e dell'ambiente.

Nel corso degli anni si sono succeduti numerosi atti legislativi recepimenti di normative europee.

La direttiva 2008/50/CE del Parlamento Europeo e del Consiglio ha abrogato la legislazione precedente costituendo un testo unico sulla qualità dell'aria ambiente. Il suo recepimento da parte dello Stato Italiano è avvenuto con il D.Lgs. 155/2010.

Il quadro riassuntivo dei riferimenti è riportato nelle tabelle seguenti, nelle quali sono presi in considerazione i singoli inquinanti, la tipologia d'esposizione (acuta o cronica) e l'oggetto della tutela, ovvero la protezione della salute umana o della vegetazione.

Tabella 1: riferimenti di legge per l'esposizione acuta D.Lgs. 155/2010

INQUINANTE	TIPOLOGIA	CONCENTRAZIONE
PM10	Valore limite giornaliero da non superare più di 35 volte per anno civile	50 μg/m ³
O ₃	Soglia di informazione Media oraria *	180 µg/m³
03	Soglia di allarme Media oraria *	240 μg/m³
NO ₂	Soglia di allarme **	400 μg/m³
NO ₂	Valore limite orario da non superare più di 18 volte per anno civile	200 μg/m³
СО	Valore limite Media massima giornaliera calcolata su 8 h	10 mg/m ³
SO ₂	Soglia di allarme **	500 μg/m³
SO ₂	Valore limite orario da non superare più di 24 volte per anno civile	350 μg/m ³
SO ₂	Valore limite giornaliero da non superare più di 3 volte per anno civile	125 μg/m ³

^{*} per l'applicazione dell'articolo 10 comma 1, deve essere misurato o previsto un superamento di tre ore consecutive

^{**} misurato per 3 ore consecutive, presso siti fissi di campionamento aventi un'area di rappresentatività di almeno 100 Km² oppure pari all'estensione dell'intera zona o dell'intero agglomerato se tale zona o agglomerato sono meno estesi

Tabella 2: riferimenti di legge per l'esposizione cronica D.Lgs. 155/2010

INQUINANTE	TIPOLOGIA	CONCENTRAZIONE	NOTE
PM10	Valore limite Media su anno civile	40 μg/m ³	
PM2.5	Valore limite Media su anno civile	25 μg/m³	Margine tolleranza 20 % l'11 giugno 2008, con riduzione il 1 gennaio successivo e successivamente ogni 12 mesi secondo una percentuale annua costante fino a raggiungere lo 0 % entro il 1°gennaio 2015
О3	Valore obiettivo per la protezione della salute Media massima giornaliera calcolata su 8 h da non superare per più di 25 volte per anno civile come media su 3 anni *	120 μg/m ³	
О3	Valore obiettivo a lungo termine per la protezione della salute umana Media massima giornaliera calcolata su 8 h nell'arco dell'anno civile	120 μg/m ³	Data entro la quale deve essere raggiunto l'obiettivo a lungo termine non definita
NO ₂	Valore limite Anno civile	40 μg/m³	
Pb	Valore limite Media su anno civile	0.5 μg/m ³	
C ₆ H ₆	Valore limite Media su anno civile	5 μg/m³	
As	Valore obiettivo Media su anno civile	6 ng/m³	Da raggiungere entro il 31/12/2012
Ni	Valore obiettivo Media su anno civile	20 ng/m³	Da raggiungere entro il 31/12/2012
Cd	Valore obiettivo Media su anno civile	5 ng/m³	Da raggiungere entro il 31/12/2012
B(a)P	Valore obiettivo Media su anno civile	1 ng/m³	Da raggiungere entro il 31/12/2012

^{*} il raggiungimento del valore obiettivo sarà valutato nel 2013, con riferimento al triennio 2010 - 2012, per la protezione della salute umana e nel 2015, con riferimento al quinquennio 2010 - 2014, per la protezione della vegetazione.

Tabella 3: riferimenti di legge per la vegetazione D.Lgs. 155/2010

INQUINANTE	TIPOLOGIA	CONCENTRAZIONE	NOTE
so ₂	Livello critico per la vegetazione Anno civile	20 μg/m³	
SO ₂	Livello critico per la vegetazione (1 ottobre - 31 marzo)	20 μg/m³	
NO _X	Limite critico per la vegetazione Anno civile	30 μg/m³	
О3	Valore obiettivo per la protezione della vegetazione AOT40 (calcolato sulla base dei valori di 1 h) da maggio a luglio *	18000 μg/m ³ h come media su 5 anni	
О3	Valore obiettivo a lungo termine per la protezione della vegetazione AOT40 (calcolato sulla base dei valori di 1 h) da maggio a luglio *	6000 µg/m³ h come media su 5 anni	Data entro la quale deve essere raggiunto l'obiettivo a lungo termine non definita

- il raggiungimento del valore obiettivo sarà valutato nel 2013, con riferimento al triennio 2010 2012, per la protezione della salute umana e nel 2015, con riferimento al quinquennio 2010 2014, per la protezione della vegetazione.
- AOT = Accumulated Ozone exposure over a Threshold of 40 Parts Per Billion definito come la somma delle differenze tra le concentrazioni orarie di ozono e la soglia prefissata 40 ppb, relativamente alle ore di luce.

7 - Risultati analitici dell'attività di monitoraggio, confronto con i riferimenti di legge

Nelle tabelle che seguono vengono esposti i raffronti tra i limiti di legge e i valori misurati nel periodo d'indagine dei diversi inquinanti per quanto riguarda le soglie di esposizione acuta e cronica, secondo quanto stabilito dalla normativa. Per quanto riguarda l'esposizione cronica il dato viene fornito a puro titolo indicativo poiché i limiti sono riferiti a un intero anno di monitoraggio.

COMU	NE BELLUNO – CASTION: CONFRON	TO CON I RIFERIM	ENTI DI LEGGE
	Esposizione a	cuta	
Inquinante	Tipologia	Valore	Risultati
PM10	Limite di 24 h da non superare più di 35 volte per anno civile	50 μg/m³	0 superamenti
O ₃	Soglia di informazione Media 1 h	180 μg/m³	3 superamenti
O ₃	Soglia di allarme Media 1 h	240 μg/m³	0 superamenti
NO ₂	Soglia di allarme*	400 μg/m ³	0 superamenti
NO ₂	Limite orario da non superare più di 18 volte per anno civile	200 μg/m³	0 superamenti
СО	Massimo giornaliero della media mobile di 8 h	10 mg/m ³	0 superamenti
SO ₂	Soglia di allarme*	500 μg/m ³	0 superamenti
SO ₂	Limite orario da non superare più di 24 volte per anno civile	350 μg/m³	0 superamenti
SO ₂	Limite di 24 h da non superare più di 3 volte per anno civile	125 μg/m³	0 superamenti

^{*} misurato per 3 ore consecutive in un sito rappresentativo della qualità dell'aria in un'area di almeno 100 Km², oppure in un'intera zona o agglomerato nel caso siano meno estesi.

СОМ	UNE BELLUNO – CASTION: CON	IFRONTO C	ON I RIFERIME	ENTI DI LEGGE
	Esposizi	one cronica		
Inquinante	Tipologia	Valore	Note	Risultati
PM10	Valore limite annuale Anno civile	40 μg/m³		valore medio 15 µg/m³
O ₃	Valore obiettivo per la protezione della salute da non superare per più di 25 giorni all'anno come media su 3 anni Media su 8 h massima giornaliera	120 μg/m ³	In vigore dal 2010. Prima verifica nel 2013	26 superamenti
O ₃	Obiettivo a lungo termine per la protezione della salute umana Media su 8 h massima giornaliera	120 μg/m ³		26 superamenti
NO ₂	Valore limite annuale per la protezione della salute umana	40 μg/m ³		valore medio 9 µg/m³
C ₆ H ₆	Valore limite annuale per la protezione della salute umana Anno civile	5 μg/m³		valore medio 0.8 µg/m³

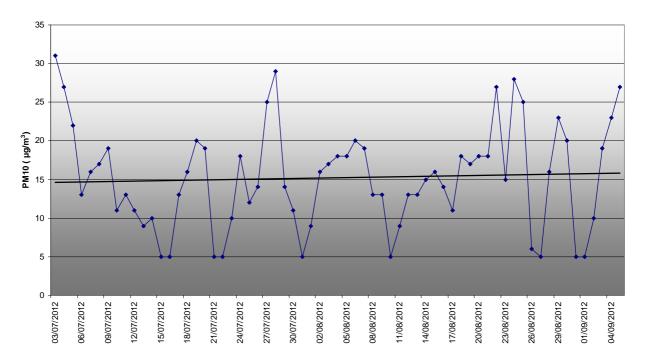
Commento ai dati

Polveri PM10: durante la campagna di monitoraggio il limite giornaliero di esposizione di 50 $\mu g/m^3$ non è mai stato superato. Il valore massimo rilevato è stato di 31 $\mu g/m^3$. La media del periodo è stata di 15 $\mu g/m^3$, inferiore al limite annuale.

Ozono: si sono registrati tre superamenti della soglia di informazione alla popolazione di $180 \ \mu g/m^3$ e nessuno di quella di allarme di $240 \ \mu g/m^3$. Il dato massimo orario rilevato è stato di $186 \ \mu g/m^3$.

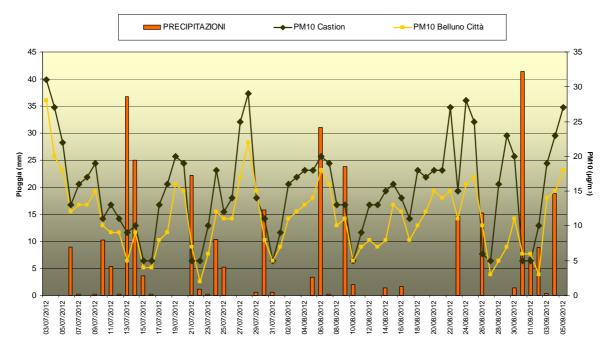
Biossido di azoto: le concentrazioni misurate si sono mantenute al di sotto dei limiti di legge di tipo acuto; il dato massimo orario rilevato nel periodo di monitoraggio è stato di $37 \mu g/m^3$, da confrontarsi con un limite orario di $200 \mu g/m^3$ da non superare più di 18ν 0 volte all'anno. Il dato medio del periodo è stato di $9 \mu g/m^3$, inferiore al limite annuale per la protezione della salute umana fissato in $40 \mu g/m^3$.

Monossido di carbonio: le concentrazioni rilevate si sono mantenute abbondantemente al di sotto dei limiti di legge. La media mobile di otto ore massima rilevata nel periodo di campionamento è stata di 0,6 mg/m³, a fronte di un limite massimo giornaliero di 10 mg/m³.

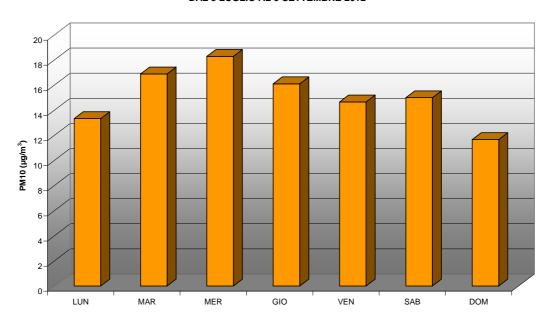

Anidride solforosa: le concentrazioni rilevate si sono mantenute abbondantemente al di sotto dei limiti di legge. Il dato massimo orario rilevato è stato di 29 μ g/m³, da confrontarsi con il limite di 350 μ g/m³.

Benzene: il valore medio dei dati giornalieri di benzene è stato di 0,8 μ g/m³, inferiore al limite annuale fissato in 5 μ g/m³.

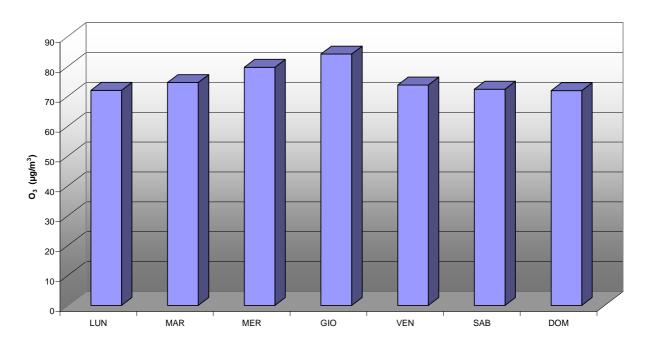
8 - Rappresentazione grafica dei dati


In questo paragrafo vengono presentate alcune valutazioni sull'andamento giornaliero dei principali parametri monitorati, cercando di metterne in evidenza la relazione con i fattori climatici e con le fonti di emissione.

Il grafico delle polveri PM10 rilevate nel periodo di monitoraggio denota un andamento costante e sempre all'interno di un range di valori relativamente bassi.


COMUNE DI BELLUNO: STAZIONE FISSA DI PARCO BOLOGNA E MOBILE CASTION CONFRONTO ANDAMENTO DELLE POLVERI PM10 DAL 3 LUGLIO AL 5 SETTEMBRE 2012

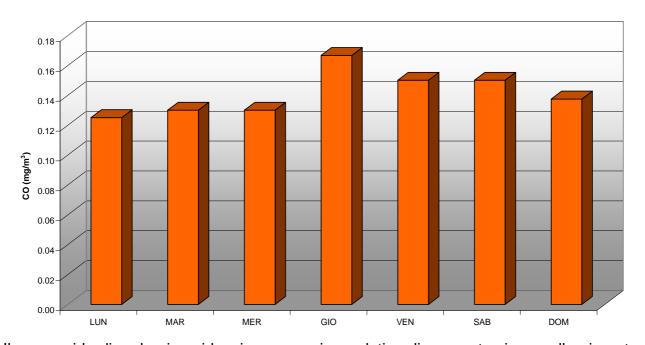
Il confronto dell'andamento delle polveri PM10 con quello rilevato nella stazione fissa di monitoraggio di Belluno parco "Città di Bologna" evidenzia una buona sovrapponibilità degli andamenti, con valori leggermente superiori nel sito di Castion. Il ruolo della pioggia nell'abbattimento delle concentrazioni è tanto maggiore quanto più sono elevati i quantitativi delle singole precipitazioni e reiterati gli episodi di maltempo.


Si è anche analizzata la base di dati in modo da ottenere una settimana tipo, per verificare in quali giorni si sono riscontrate le maggiori concentrazioni di inquinanti.

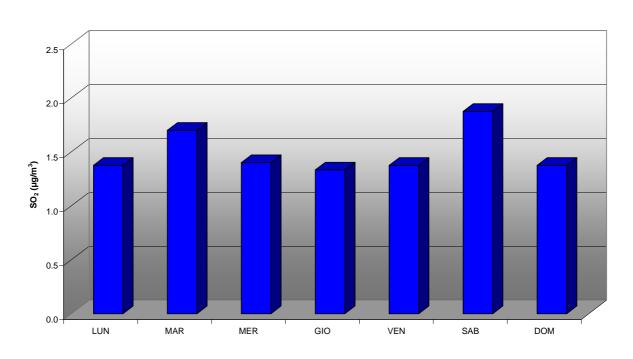
COMUNE BELLUNO LOC. CASTION: SETTIMANA TIPO POLVERI PM10 DAL 3 LUGLIO AL 5 SETTEMBRE 2012

L'andamento delle polveri PM10 evidenzia un massimo relativo di concentrazione nella giornata di mercoledì.

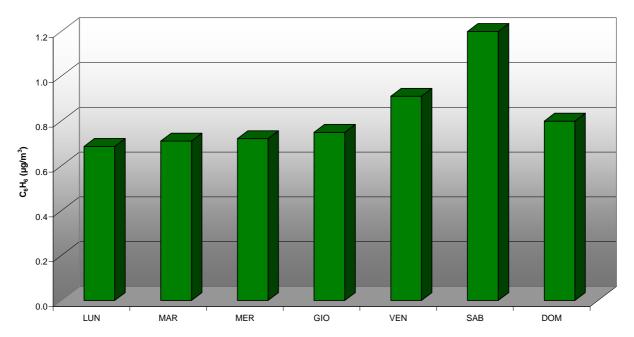
COMUNE BELLUNO LOC. CASTION: SETTIMANA TIPO PARAMETRO OZONO (O3) DAL 3 LUGLIO AL 5 SETTEMBRE 2012


L'andamento settimanale dell'ozono presenta valori crescenti fino al giovedì con un leggero calo nei giorni seguenti.

COMUNE BELLUNO LOC. CASTION: SETTIMANA TIPO PARAMETRO BIOSSIDO DI AZOTO (NO $_2$) DAL 3 LUGLIO AL 5 SETTEMBRE 2012

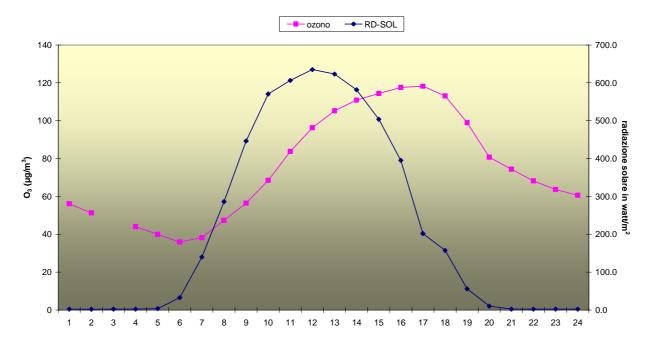

L'andamento settimanale del biossido d'azoto evidenzia un massimo relativo nella giornata di venerdì e un valore minimo alla domenica.

COMUNE BELLUNO LOC. CASTION: SETTIMANA TIPO MONOSSIDO DI CARBONIO (CO)
DAL 3 LUGLIO AL 5 SETTEMBRE 2012

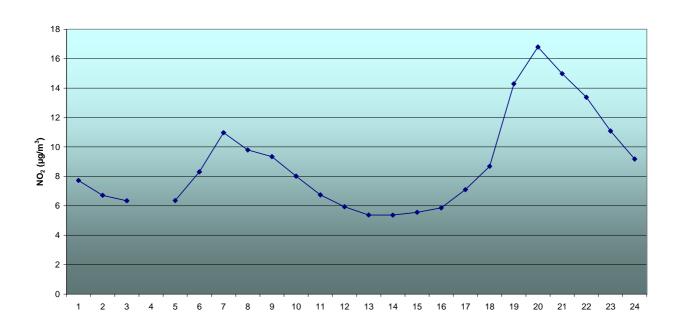

Il monossido di carbonio evidenzia un massimo relativo di concentrazione nella giornata di giovedì.

COMUNE BELLUNO LOC. CASTION: SETTIMANA TIPO PARAMETRO ANIDRIDE SOLFOROSA (SO $_2$) DAL 3 LUGLIO AL 5 SETTEMBRE 2012

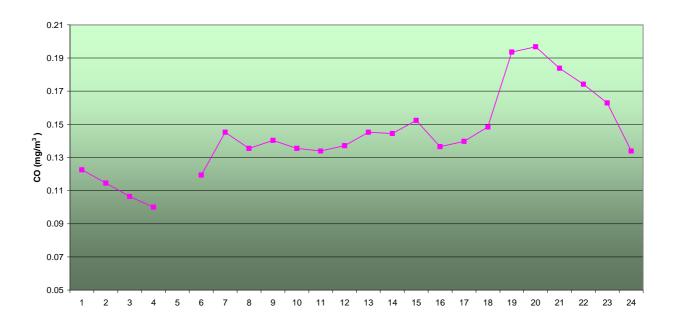
L'anidride solforosa presenta concentrazioni quasi sempre al di sotto del limite di rilevabilità strumentale, con valori leggermente superiori nella giornata di sabato.


COMUNE BELLUNO LOC. CASTION: SETTIMANA TIPO PARAMETRO BENZENE (C_6H_6) DAL 3 LUGLIO AL 5 SETTEMBRE 2012

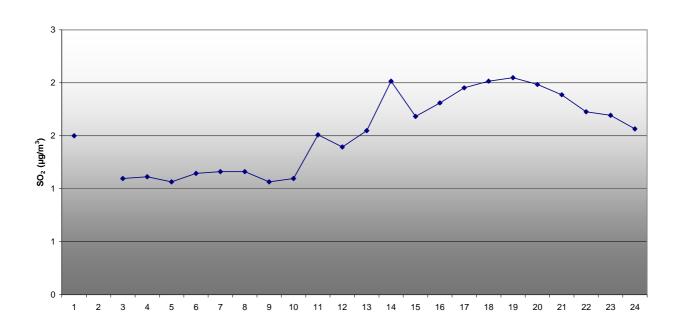
Anche il benzene evidenzia un massimo relativo di concentrazione nella giornata di sabato.


Nei seguenti diagrammi viene rappresentato il giorno tipo, per verificare l'andamento giornaliero degli inquinanti monitorati in continuo ed evidenziare così le fasce orarie di maggiore concentrazione nell'arco della giornata. L'elaborazione è stata eseguita in base all'ora solare.

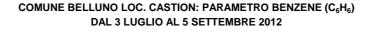
COMUNE BELLUNO LOC. CASTION: PARAMETRI OZONO (03) E RADIAZIONE SOLARE DAL 3 LUGLIO AL 5 SETTEMBRE 2012

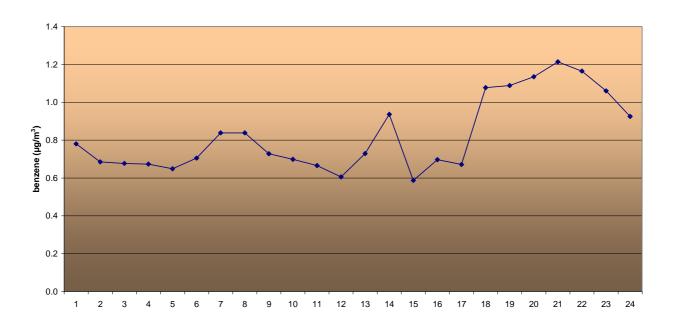

L'ozono ha un andamento associato a quello della radiazione solare. Infatti il picco della radiazione solare (tracciato blu) precede di un paio d'ore quello dell'ozono e presenta le massime concentrazioni a metà pomeriggio.

COMUNE BELLUNO LOC. CASTION: PARAMETRO BIOSSIDO DI AZOTO (NO2)
DAL 3 LUGLIO AL 5 SETTEMBRE 2012


L'andamento del biossido d'azoto presenta due punte giornaliere al mattino ed alla sera.

COMUNE BELLUNO LOC. CASTION: PARAMETRO MONOSSIDO DI CARBONIO (CO) DAL 3 LUGLIO AL 5 SETTEMBRE 2012




L'andamento del monossido di carbonio, a differenza del biossido d'azoto presenta un andamento relativamente costante durante il giorno e un solo picco serale.

COMUNE BELLUNO LOC. CASTION: PARAMETRO ANIDRIDE SOLFOROSA (SO2)
DAL 3 LUGLIO AL 5 SETTEMBRE 2012

L'anidride solforosa, presenta un andamento poco lineare dovuto alle concentrazioni estremamente basse che si mantengono in prossimità del limite di rilevabilità strumentale.

Il benzene, pur mantenendosi su concentrazioni basse, presenta un massimo relativo di concentrazione al mattino ed uno maggiore alla sera intervallati da un altro incremento alle ore 14.

Non è stato possibile effettuare questo tipo di elaborazioni per il PM10 in quanto lo strumento fornisce solamente le medie giornaliere come previsto dalla normativa.

Nel caso del PM10, poiché la normativa prevede valutazioni nel corso di un anno per il confronto con i termini di riferimento, data la limitatezza del periodo di monitoraggio, si è ritenuto opportuno utilizzare un programma messo a punto dall'Osservatorio Regionale Aria di ARPAV che consente di effettuare una stima sul probabile superamento dei limiti di legge.

Tale metodologia si articola nei seguenti passaggi:

- 1. per un sito di misura sporadico (campagna di monitoraggio) viene scelta una stazione fissa più rappresentativa (la stazione più vicina oppure una caratterizzata dalla stessa tipologia di emissioni e, statisticamente, dallo stesso tipo di meteorologia);
- 2. viene calcolato un fattore di correzione per passare dal periodo all'anno sulla base dei parametri della distribuzione dei dati misurati nella stazione fissa;
- 3. viene applicato il fattore di correzione per estrapolare il parametro statistico annuale incognito nel sito sporadico;

4. vengono confrontati il parametro statistico annuale estrapolato ed il valore limite di legge.

I parametri statistici di interesse sono la media ed il 90° percentile. Quest'ultimo viene utilizzato perché, in una distribuzione di 365 valori, il 90° percentile corrisponde al 36° valore massimo. Poiché per il PM10 sono consentiti 35 superamenti del valore limite di 50 μ g/m³ su 24 ore, in una serie annuale di 365 valori giornalieri il rispetto del limite di legge è garantito se il 36° valore in ordine di gra ndezza è minore di 50 μ g/m³.

Stazione fissa di Belluno dati 2011/2012; stazione mobile di Belluno loc. Castion dati dal 3	STAZIONE FISSA	SITO SPORADICO	RISULTATO						
luglio al 5 settembre 2012	Belluno	Belluno Loc. Castion	Valori Annuali Estrapolati						
data	PM10	PM10	Belluno Loc. Castion						
data	(ug/m³)	(ug/m³)	90°perc	58					
giorni di rilevamento	362	65	media	30					
n° superamenti del V.L. di 50 μg/m 3	9	0							
media	22	15							

La tabella sopra riportata, relativa alla campagna eseguita a Belluno a Castion a confronto con la stazione fissa di Belluno "parco Città di Bologna", evidenzia un valore del 90° percentile di 58 $\mu g/m^3$ ed una media di 30 $\mu g/m^3$ che indica una stima di superamenti del limite di legge superiore ai 35 consentiti ma una media annuale all'interno dei limiti.

9 - Scheda sintetica di valutazione

La scheda ha l'obiettivo di presentare in forma sintetica una valutazione riassuntiva dello stato di qualità dell'aria nel sito di Belluno loc. Castion durante il periodo di monitoraggio.

Nella scheda sono riportati gli indicatori selezionati, il riferimento normativo (ove applicabile) ed il relativo giudizio sintetico.

Indicatore dello stato di qualità dell'aria	Riferimento normativo	Giudizio sintetico	Sintesi dei principali elementi di valutazione
Polveri (PM10)	D.Lgs. 155/10	\odot	Nessun superamento del valore limite giornaliero. Concentrazione media del periodo inferiore al limite annuale.
Ozono (O ₃)	D.Lgs. 155/10	$\stackrel{igorphi}{\bigcirc}$	Superamenti della soglia di informazione alla popolazione; nessun superamento della soglia di allarme.
Biossido di azoto (NO ₂)	D.Lgs. 155/10	\odot	Concentrazione ampiamente inferiore al limite previsto dalla normativa.
Monossido di carbonio (CO)	D.Lgs. 155/10	\odot	Concentrazione ampiamente inferiore al limite previsto dalla normativa.
Anidride solforosa (SO ₂)	D.Lgs. 155/10	\odot	Concentrazione ampiamente inferiore al limite previsto dalla normativa.
Benzene (C ₆ H ₆)	D.Lgs. 155/10	\odot	Concentrazione media del periodo inferiore al limite previsto dalla normativa.

Legenda:

Simbolo	Giudizio sintetico
\odot	Positivo
<u></u>	Intermedio
\odot	Negativo
?	Informazioni incomplete o non sufficienti

10 - Conclusioni

Il monitoraggio della qualità dell'aria eseguito a Belluno loc. Castion è stato caratterizzato da valori di ozono mediamente elevati, in linea con la stagionalità di questo inquinante strettamente legata alla radiazione solare.

Benzene, biossido d'azoto, anidride solforosa, monossido di carbonio e polveri PM10 sono risultati inferiori ai riferimenti di legge.

Per quanto riguarda il parametro polveri PM10, il programma che calcola il numero dei superamenti su base annuale indica un numero di superamenti attesi del limite di legge superiore ai 35 consentiti e l'ottemperanza dei limiti di riferimento per l'esposizione cronica.

L'Ufficio Reti - P.I. Simionato Massimo –

- Dott. Tormen Riccardo -

Visto

Il Dirigente Servizio Stato dell'Ambiente

- Dott.ssa Anna Favero -

ALLEGATI:

- A tabella riepilogativa delle medie giornaliere e dei massimi valori orari di tutti i parametri rilevati.
- B tabelle dati orari
- C risultati del monitoraggio del traffico condotto in loc Castion

ALLEGATO A: TABELLA RIEPILOGATIVA DELLE MEDIE GIORNALIERE E DEI MASSIMI VALORI ORARI DI TUTTI I PARAMETRI RILEVATI

	сомс	INE DI BE				MEDI GIO 5 SETTEI		RIE MAS 12	SIMI OR	ARI	
Param.	s	O ₂	N	O ₂)3	C	:0	Ben	zene	PM10
Unità di	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³	mg/m³	μg/m³	μg/m³	μg/m³
misura	293K	293K Max	293K	293K Max	293K	293K Max	293K	293K Max	293K	293K Max	
data	media	orario	media	orario	media	orario	media	orario	media	огагіо	media
03/07/2012	2	2	12	27	77	124	0.1	0.2	0.6	1.4	31
04/07/2012	1	2	11	21	99	161	0.1	0.1	0.6	1.0	27
05/07/2012	2	3	10	19	116	186	0.1	0.2	0.5	1.0	22
06/07/2012			10	18	83	120	0.1	0.2	0.5	0.8	13
07/07/2012 08/07/2012	1	2	10	18 20	98	149 143	0.1	0.2	0.5 0.6	0.9	16 17
09/07/2012	2	3	10	18	114	163	0.1	0.2	0.6	1.3	19
10/07/2012	2	2	10	19	85	121	0.1	0.2	0.5	1.3	11
11/07/2012	2	2	8	16	90	131	0.1	0.2	0.5	1.1	13
12/07/2012	1	2	8	19	81	133	0.1	0.2	0.6	1.1	11
13/07/2012	1	1	12	22	56	90	0.1	0.2	0.7	1.0	9
14/07/2012	1	2	8	12	69	111	0.1	0.2	0.6	0.9	10
15/07/2012	1	1	4	6	62	83	0.1	0.1	0.4	0.6	5
16/07/2012	1	2	5	13	64	116	0.1	0.1	0.5	1.3	5
17/07/2012	1	2	9	17	78	136	0.1	0.2	0.6	1.2	13
18/07/2012	1	2	9	19	93	143	0.1	0.2	0.7	1.7	16
19/07/2012	1	2	12	28	107	171	0.2	0.3	0.8	1.7	20
20/07/2012	2	2	13	23	101	154	0.2	0.2	0.8	1.2	19
21/07/2012	1	1	8	14	65	85	0.1	0.1	0.5	0.9	5
22/07/2012	2	2	7	18	49	83	0.1	0.2	0.5	0.9	5
23/07/2012	1	2	7	11	61	97	0.1	0.2	0.5	1.1	10
24/07/2012	3	21	10	25	65	93	0.1	0.2	0.8	2.7	18
25/07/2012	1	2	9	18	58	106	0.1	0.2			12
26/07/2012	1	2	10	35	58	113	0.2	0.3	0.0		14
27/07/2012 28/07/2012									0.6	0.9	25 29
29/07/2012											14
30/07/2012											11
31/07/2012	2	11	7	19	65	107	0.1	0.2			5
01/08/2012	2	3	8	25	63	132	0.1	0.2	0.8	2.1	9
02/08/2012	2	3	11	22	80	146	0.2	0.3	1.0	3.0	16
03/08/2012	3	10	15	37	92	159	0.2	0.5	2.0	7.6	17
04/08/2012	6	29	13	36	88	148	0.3	1.3	4.8	24.2	18
05/08/2012	2	6	9	23	86	130	0.2	0.6	1.9	9.0	18
06/08/2012	2	3	8	15	76	132	0.1	0.2	0.7	1.5	20
07/08/2012	1	2	8	22	67	127	0.1	0.2	0.7	1.3	19
08/08/2012	1	2	9	20	77	118	0.1	0.2	0.7	1.7	13
09/08/2012	1	2	7	15	74	127	0.1	0.2	0.6	1.2	13
10/08/2012	1	2	8	29	52	96	0.1	0.2	0.6	1.0	5
11/08/2012	1	2	7	16	68	124	0.1	0.2	0.6	1.2	9
12/08/2012	1	1	6	12	75	107	0.1	0.2	0.6	1.0	13
13/08/2012	1	1	7	14	78	121	0.1	0.2	0.6	0.9	13
14/08/2012	1	2	8	21	90	135	0.2	0.2	0.6	1.1	15
15/08/2012	1	1	8	16	84	134	0.2	0.3	0.8	1.4	16
16/08/2012 17/08/2012	1	3	7 8	13 22	71 71	114 139	0.2	0.2	0.7	2.0	14 11
18/08/2012	2	3	9	28	84	142	0.1	0.3	0.7	1.9	18
19/08/2012	2	2	10	31	87	142	0.2	0.3	0.8	1.7	17
20/08/2012	1	2	9	26	90	151	0.2	0.3	0.8	1.7	18
21/08/2012	2	3	9	21	95	162	0.2	0.3	0.8	1.5	18
22/08/2012	2	3	5	16	101	186	0.1	0.2	0.5	1.1	27
23/08/2012	2	4	6	37	90	144	0.2	0.3	0.7	2.1	15
24/08/2012	1	3	9	31	84	146	0.2	0.3	0.9	1.7	28
25/08/2012	2	3	12	31	79	130	0.2	0.3	1.0	1.7	25
26/08/2012	1	2	7	10	63	91	0.1	0.2	0.7	1.1	6
27/08/2012	1	1	7	28	58	104	0.1	0.2	0.7	1.7	5
28/08/2012	2 1 1 11 25		25	73	128	0.1	0.2	0.8	1.3	16	
29/08/2012			26	83	139	0.2	0.5	0.9	2.1	23	
30/08/2012			32	80	136	0.2	0.3	1.1	1.7	20	
31/08/2012	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		17	51	71	0.2	0.2	1.4	2.2	5	
01/09/2012			17	42	62	0.1	0.3	1.2	1.7	5	
02/09/2012			13	55	82	0.2	0.3	0.9	1.3	10	
03/09/2012			16	35	63	0.2	0.3	1.1	1.6	19	
04/09/2012	2	2	10	22	51	85	0.2	0.3	1.0	1.8	23
05/09/2012	2 1	3	9	15	49 76	98	0.2	0.3	1.0	1.7	27
media	6	29	9 15	9~		400	0.1	4.5	0.8	200	15
valore max				37	116	186	0.3	1.3	4.8	24.2	31

AlliDRIDE SOLFOROSA (SO.): LIMITE ORARIO 350 µg/m²
POLVERI PM10: LIMITE GIORIALIERO 50 µg/m²
BIOSSIDO DI AZOTO (INO.): LIMITE ORARIO 200 µg/m²
0ZONO (O.): SOGLIA DI INFORMAZIONE ALLA POPOLAZIONE 180 µg/m² SOGLIA DI ALLARME 240 µg/m²
MONOSSIDO DI CARBONIO (CO): LIMITE GIORIALIERO media mobile 8 ore 10 mg/m²

PRO/		COMUNE			SI	AZ R		401	10		F	YRA	VETR	Ω		U	NTA	DM	S	METODO				FERIODO			TEVPOMED			Fŧ	PERICOSS.		
BL		CAS	IIQN TVO			MEZZ	MO	ЭШЕ	Ξ	MC	NOS) (2)	RBC	NO		mg	/m³		æ	earbi	nento	οIR	l	gio-	12		CR4	\		MES	E	
															L	LCL	020	12															
gg/are	1 2 3 4 5 6 7 8 9													16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	GMEDIO			
1			02	Q1	Q1	01	Q1	01	01	0.0	01	01	Q1	01	QO	Q1	01	02	Q1	Q1	Q1	Q1	Q1	01	Q1	Q1	Q1				02	01	
2			02	QO	Q1	01	Q1	Q1	Q1	0.0	Q1	Q1	Q1	01	Q1	0.0	01	01	Q1	Q1	Q1	Q1	Q1	Q1	01	Q1	Q1				02	01	
3			02	QO	01	01	Q1	Q1	Q1	0.0	01	01	Q1	01	Q1	Q1	01	01	Q1	Q1	01	QO	Q1	01	01	Q1	Q1				02	01	
4			02	QO	Q1	Q1	Q1	01	01	0.0	01	Q1	Q1	01	Q1	00	01	01	Q1	01	Q1	QO	Q1	Q1	Q1	Q1	Q1				Q1	01	
5																																	
6			Q1	Q1	Q1	01	Q1	01	01	01	01	01	Q1	01	01	Q1	01	01	02	02	01	01	Q1	01	Q1	Q1	Q1				Q1	01	
7			Q1	Q1	02	01	01	Q1	Q1	01	Q1	01	Q1	01	Q1	Q1	01	Q1	02	0.2	01	Q1	Q1	02	0.2	Q1	Q1				01	Ω1	
8			Q1	Q1	Q1	01	Q1	01	01	01	01	01	Q1	01	01	Q1	01	01	02	02	Q1	Q1	Q1	01	01	02	Q1				01	01	
9			Q1	Q1	Q1	01	Q1	Q1	Q1	01	01	01	Q1	01	Q1	Q1	01	01	02	02	Q1	Q1	Q1	01	0.2	Q1	Q1				Q1	Ω1	
10			Q1	Q1	Q1	01	Q1	Q1	Q1	Q1	Q1	01	Q1	01	Q1	Q1	01	01	02	0.2	Q1	Q1	Q1	01	01	Q1	Q1				Q1	01	
11			Q1	Q1	Q1	01	01	Q1	01	01	Q1	01	Q1	01	01	Q1	01	01	02	02	01	Q1	Q1	01	Q1	Q1	Q1				Q1	01	
12			Q1	Q1	Q1	01	Q1	Q1	Q1	01		01	Q1	01	Q1	0.0	01	01	Q1	01	Q1	01	Q1	01	01	Q1	Q1			0.6	01	01	
13			Q1	Q1	Q1	01	01	01	01	01	01		Q1	01	01	00	01	01	Q1	Q1	01	Q1	Q1	01	01	Q1	Q1			04	Q1	01	
14			Q1	Q1	Q1	01	Q1	01	Q1	Q1	01	01	Q1	01	01	00	Q1	Q1	Q1	01	Q1	Q1	Q1	01	02	Q1	02			0.3	Q1	01	
15			Q1	Q1	Q1	01	01	01	Q1	01	02	01	Q1	01	Q1	0.0	01	Q1	Q1	Q1	0.0	Q1	Q1	01	0.2	02	02			03	Q1	01	
16			Q1	Q1	Q1	01	Q1	01	Q1	Q1	02	01	Q1	01	Q0	00	01	Q1	02	Q1	0.0	01	Q1	02	02	02	02			03	01	Ω1	
17			Q1	Q1	Q1	Q1	Q1	Q1	01	01	02	01	Q1	01	01	Q1	01	Q1	02	Q1	00	Q1	Q1	02	02	02	02			0.2	Q1	01	
18			Q1	Q1	Q1	01	Q1	01	01	01	02	01	Q1	02	01	Q1	01	01	02	01	Q1	01	Q1	02	01	02				03	01	01	
19			Q1	Q1	02	01	Q1	01	02	02	02	01	Q1	02	01	Q1	02	02	02	02	Q1	01	Q1	02	02	02				03	02	02	
20			Q1	Q1	02	01	02	0.2	02	02	02	02	Q1	01	Q1	Q1	02	0.2	0.3	02	Q1	02	02	02	0.2	03				0.3	01	02	
21			Q1	Q1	Q1	0.2	02	01	02	02	01	02	02	01	01	Q1	02	02	02	0.2	01	0.2	Q1	02	0.2	03				01	Q1	02	
22			Q1	01	01	01	0.1	01	01	02	01	01	01	01	01	01	0.2	0.2	0.3	0.2	01	01	01	01	0.2	03				0.2	01	01	
23			Q1	Q1	Q1	01	02	Q1	01	01	01	01	01	01	01	Q1	02	0.2	02	0.2	01	01	02	01	01	02				0.2	01	01	
24			Q1	01	01	01	02	01	Q1	01	01	01	Q1	0.0	01	01	02	01	02	01	01	01	01	0.1	01	02				0.2	01	01	
MEDIA			Q1	Q1	Q1	Q1	01	Q1	Q1	Q1	Q1	01	Q1	01	Q1	Q1	01	Q1	02	Q1	01	Q1	Q1	01	Q1	02	Q1			0.3	Q1		
MIN			Q1	QO	Q1	01	Q1	01	01	0.0	01	01	Q1	0.0	QO	0.0	01	01	01	01	0.0	QO	Q1	01	01	Q1	Q1			01	01		
MAX			02	Q1	02	0.2	02	0.2	02	02	02	02	02	02	Q1	Q 1	02	02	03	0.2	Q1	02	02	02	02	03	02			Q6	02		

PRO/					SI	AZ F		401	<u>10</u>		F	YRA	VEIR	Ω		U	NTA	DM	2	METODO				FERIODO			TEVPOMED			PERODOSS.		
BL		CAS	IIQN TVC			MEZZ	20M	BLE	=	MC	NOS) (2)	RBC	NO		mg	/m³		æ	ecrbi	nento	οIR	ą	posto	12		CR4	\		MES	E
															A	3051	02	12														
gg/are	9 1 2 3 4 5 6 7 8 9													14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	GMEDIO
1	01	Q1	02	Q1	02	Q1	Q1	Q1	Q1	01	01	Q1	Q1	01	0.2	02	Q1	Q1	02	Q1	02	Q1	Q1	02	03	02	00	Q1	Q1	0.2	02	Ω1
2	01	Q1	Q1	Q1	01	01	Q1	Q1	01	01	01	01	Q1	01	0.2	02	Q1	Q1	02	02	02	Q1	Q1	Q1	02	02	0.0	01	Q1	0.2	02	Q1
3	01	Q1	Q1	Q1	01	Q1	Q1	Q1	Q1	01	01	Q1	Q1	01	Q1	02	Q1	Q1	02	Q1	01	Q1	Q1	Q1	02	01	00	Q1	Q1	Q1	02	Ω1
4	0.0	01	Q1	Q1	01	01	Q1	01	Q1	01	01	Q1	Q1	01	01	02	Q1	Q1	01	01	01	Q1	Q1	Q1	02	01	0.0	Q1	Q1	Q1	02	Q1
5																																
6	01	01	Q1	Q1	01	01	Q1	01	01		Q1	Q1	01	01	Q1	02	01	Q1	01	02	02	Q1	Q1	02	Q1	01	01	02	01	02	02	01
7	Q1	0.2	02	02	02	0.2	02	01	02	02	Q1	01	Q1	01	01	02	01	Q1	01	0.2	03	Q1	Q1	02	02	01	01	0.2	02	02	02	02
8	01	01	02	03	02	01	02	0.2	Q1	01	01	01	01	02	02	02	Q1	Q1	01	02	02	Q1	Q1	02	02	01	01	01	02	02	02	02
9	01	Q1	Q1	05	04	Q1	01	01	01	Q1	Q1	Q1	Q1	01	02	02	Q1	02	02	0.2	02	Q1	Q1	02	02	02	01	01	02	02	02	02
10	01	0.2	02	02	04	01	01	01	Q1	Q1	01	Q1	01	01	0.2	02	Q1	02	02	02	02	01	Q1	02	02	02	01	Q1	02	02	02	02
11	01	02	02	02	02	01	01	01	01	Q1	Q1	01	Q1	01	02	02	Q1	02	02	02	02	Q1	Q1	02	02	02	01	01	02	02	02	02
12	01	0.2	02	02	02	01	01	Q1	Q1	01	01	01	01	02	0.2	02	Q1	02	02	0.2	02	Q1	Q1	02	0.2	02	01	01	02	02	01	02
13	01	01	02	08	06	01	01	01	01	Q1	0.1	01	01	01	0.2	02	01	02	02	01	01	01	01	02	0.2	01	01	0.2	02	0.2	01	02
14	01	Q1	02	1.0	02	0.2	Q1	Q1	01	Q1	Q1	Q1	Q1	02	02	02	Q1	02	02	01	02	Q1	Q1	02	Q1	01	01	01	02	02	Q1	02
15	01	02	02	1.3	01	01	01	01	01	01	01	01	01	02	02	01	01	02	02	0.2	02	02	01	02	01	02	01	01	02	02	01	02
16	01	02	0.5	01	01	0.2	01	01	01	Q1	01	01	01	01	02	01	01	01	01	01	02	0.2	01	02	01	01	01	0.1	02	0.2	02	01
17	01	01	02	04	02	0.2	01	01	02	Q1	0.2	01	01	02	0.2	01	01	Q1	01	01	02	0.2	01	01	01	01	01	01	02	0.2	01	01
18	01	01	Q1	04	01	0.2	01	01	02	Q1	0.1	01	01	01	0.2	01	01	02	01	0.2	03	0.2	01	02	0.2	01	01	0.2	02	0.3	01	02
19	02	02	04	03	02	0.2	02	0.2	02	01	0.2	02	02	02	0.3	02	02	02	02	0.2	03	02	03	03	0.3	00	01	0.2	02	0.3	01	02
20	02	0.2	02	03	02	01	02	0.2	01	02	0.2	02	02	02	03	02	02	03	03	0.3	02	0.2	0.2	02	03	00	02	0.2	02	03	01	02
21	02	03	04	02	02	01	02	01	01	Q1	0.2	02	02	02	0.2	02	03	03	03	0.2	01	01	03	03	0.2	00	02	0.2	02	0.3	01	02
22	02	0.2	04	03	02	01	02	02	02	Q1	01	02	02	02	0.2	02	03	03	03	0.2	00	01	03	02	03	00	01	0.2	02	03	0.2	02
23	02	0.2	02	03	01	01	02	0.2	02	Q1	0.2	02	01	02	03	01	02	02	02	0.2	01	01	0.2	03	0.2	00	01	0.2	05	0.2	01	02
24	0.1	0.2	01	0.2	01	01	01	01	01	Q1	01	01	01	02	0.2	01	02	02	02	0.2	01	01	0.2	03	0.2	00	01	0.1	02	0.2	01	01
MEDIA	01	0.2	02	03	02	01	01	01	01	Q1	01	01	01	01	0.2	02	01	02	02	0.2	02	01	01	02	0.2	01	01	01	02	0.2	0.2	
MN	0.0	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	00	01	01	01	01	00	0.0	01	01	01	01	
MAX	02	03	05	1.3	Q 6	02	02	02	02	02	0.2	02	02	02	03	02	03	03	03	03	03	02	03	03	03	02	02	02	05	03	02	

PRO/		α	ΙÆ		ST	AZ F	ILEV	AVEN	NO.		F	PARA	VET R	0		l	NTA	DM	S		ME	ī)	P	ERIO	$\overline{\mathbb{D}}$	TEN	VPON	ÆD.	PER	accomp
BL		BELL CAS				MEZZ	ZOM	ŒLE	=	MC	NOS		п с х)	RBC	NO		mg	/m³		æ	ecrbi	mento	olR	set	tenta	re-12		CRA	1		MESE
										10				;	SEIT	BVB	€2 0	12													
gg/are	1	2	3	4	5						11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	GMEDIO
1	Q1	01	0.1	0.2	02																										0
2	Q1	Q1	0.1	0.2	02																										0
3	Q1	Q1	0.1	0.2	02																										0
4	Q1	Q1	0.1	0.2	02																										0
5																															
6	Q1	01	02	0.2	02																										0
7	Q1	01	0.3	0.2	0.3																										0
8	Q1	Q1	02	0.2	02																										0
9	Q1	01	02	0.2	02																										0
10	Q1	Q1	0.1	0.2	02																										0
11	Q1	Q1	02	0.2	02																										0
12	Q1	Q1	02	0.2	02																										0
13	Q1	0.2	02	0.2	02																										0
14	Q1	0.2	02	0.2	02																										0
15	Q1	0.2	02	0.2	02																										0
16	02	0.2	02	0.2	02																										0
17	02	0.2	02	0.2	02																										0
18	02	0.2	0.3	0.2	02																										0
19	02	0.3	0.3	0.3	02																										0
20	02	03	0.3	0.2	02																										0
21	0.3	0.2	02	0.2	02																										0
22	02	0.2	02	0.2	02																										0
23	02	0.2	02	0.2	02																										0
24	Q1	0.2	02	0.2	02																										0
MEDIA	Q1	0.2	02	0.2	02																										
MIN	Q1	0.1	0.1	0.2	02																										
MAX	03	0.3	03	0.3	03																										

PRO/		COMUNE STAZ RILEVAVEN						3		F	ARA	VETR	a		J	NTA	DM	ഗ		ME	TODO		R	FRO	8	Ħ	VPOI	Ð	PE	ROX	2800	
BL						MEZZ	MO	ŒLE	=	В	CESI	200	AZO	IO(N	D)		μg	/m³		che	milun	inesc	enza	l	uglio [.]	12		OR4	١		MES	E
															L	TIGIL	020	12														
gg/are	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	GMEDIO
1			5	12	11	6	10	19	14	4	6	6	10	9	4	3	7	11	15	14	9	8	5	7	7	7	9				6	9
2			8	9	9	6	9	13	17	4	7	5	11	8	4	3	6	8	11	11	7	8	4	6	6	6	7				7	8
3			9	11	11	7	10	19	13	5	6	8	13	7	5	3	6	7	9	10	5	4	4	7	6	5	7				4	8
4																																
5			11	11	13	7	9	13	13	5	7	6	8	6	5	3	9	9	8	11	6	4	5	9	7	7	8				4	8
6			12	12	16	8	8	12	14	9	9	7	11	6	4	5	10	10	13	15	8	4	6	9	8	6	11				7	9
7			13	12	17	13	5	11	18	11	9	6	20	10	4	6	11	9	11	22	7	4	9	16	10	7	10				9	11
8			10	14	19	12	6	8	12	11	8	10	16	8	3	7	9	7	13	23	9	4	7	12	14	9	13				8	10
9			11	11	10	6	5	8	11	10	13	9	22	11	5	5	7	9	13	18	8	5	8	14	18	10	9				9	10
10			13	8	11	18	4	7	10	10	6	6	22	10	5	4	7	9	9	14	8	3	4	8	12	6	9				4	9
11			10	9	7	13	4	6	9	8	5	4	13	7	6	5	5	6		13	11	4	4	6	5	6	7				4	7
12			8	5	5	10	4	5	6	13	5	5	11	8	6	3	4	4	8	7	9	5	5	5	5	7	6				6	6
13			6	6	6	9	5	4	6	12	5		7	6	4	2	4	6	5	5	7	4	4	7		5	6			4	3	6
14			5	6	5	8	5	3	5	8	4	4	9	4	4	2	5	5	4	8	5	3	6	7	4	4	5			5	5	5
15			9	4	5	7	4	3	6	7	9	4	10	5	4	3	6	4	5	5	5	5	5	7	4	4	5			4	4	5
16			12	4	8	9	5	3	4	8	7	3	8	6	3	2	4	5	7	5	4	3	5	9	6	5	5			4	4	5
17			11	6	10	8	4	3	4	7	13	5	11	9	4	4	6	5	7	7	4	7	6	10	10	9	5			5	5	7
18			9	17	8	9	5	6	6	8	16	6	8	12	4	4	7	8	12	11	6	8	11	9	9	7	3			16	7	9
19			10	8	9	11	7	6	10	14	15	9	12	12	5	5	11	11	16	22	14	12	10	16	12	14				14	19	12
20			16	12	12	12	18	12	14	19	16	19	16	11	5	8	15	19	28	23	11	18	9	25	11	35				11	13	16
21			27	16	10	14	17	20	11	18	9	15	15	8	4	13	17	17	21	17	8	11	10	16	10	24				4	7	14
22			18	21	8	13	16	17	14	17	6	12	9	3	3	10	14	14	17	19	13	10	10	11	11	19				4	8	12
23			20	15	6	14	16	18	14	8	7	13	9	4	4	10	15	14	17	15	10	7	10	8	9	14				3	8	11
24			12	16	6	11	18	14	4	7	5	12	8	3	4	9	13	12	17	13	7	11	9	10	8	12				3	7	10
MEDIA			12	11	10	10	8	10	10	10	8	8	12	8	4	5	9	9	12	13	8	7	7	10	9	10	7			6	7	
MIN			5	4	5	6	4	3	4	4	4	3	7	3	3	2	4	4	4	5	4	3	4	5	4	4	3			3	3	
MAX			27	21	19	18	18	20	18	19	16	19	22	12	6	13	17	19	28	23	14	18	11	25	18	35	13			16	19	

PRO/			ΙÆ		S	TAZ F		AVEN	OII		F	YR4	VETF	Ø		l	NTA	DM	IS		ME	ΓŒC)	R	ERIC	∞	TEN	/PON	ÆD.	R	RODE	2800
BL						MEZ	20M			В	1880	200	AZO	TO(N	D)		μg	/m³		dhe	milun	ineso	enza	ą	posto	-12		OR4	\		ME	£
															Δ	Œ	1020	12														
gg/are	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	GMEDIO
1	5	10	15	12	13	9	5	5	6	4	6	6	7	5	6	7	6	9	9	7	7	4	5	4	9	9	5	7	7	7	5	7
2	5	8	9	8	8	6	5	5	5	4	4	5	6	5	7	6	5	10	9	7	7	4	3	3	8	6	5	6	6	7	5	6
3	5	6	8	7	7	6	5	4	5	4	4	4	5	5	6	6	4	6	7	7	8	6	3	2	6	6	3	5	6	7	4	5
4																																
5	5	7	9	9	6	7	6	6	5	4	5	4	6	4	6	5	5	6	6	7	7	2	0	0	6	4	5	5	7	5	4	5
6	6	11	13	12	9	13	7	10	7	7	5	5	6	7	8	6	5	6	7	10	11	3	1	1	7	6	7	11	12	14	6	8
7	8	10	20	15	11	15	7	12	13	9	6	5	9	10	9	6	5	9	6	10	19	7	7	8	12	9	10	17	21	22	15	11
8	8	11	16	13	9	12	13	13	15	7	6	5	8	7	6	5	7	9	7	8	10	6	4	7	12	8	6	14	8	16	16	9
9	6	9	13	13	7	11	9	11	9	6	7	6	7	6	6	5	6	8	7	10	10	6	3	7	10	8	5	12	8	15	13	8
10	7	9	12	9	7	8	4	10	9	5	6	5	6	5	6	6	7	8	6	8	10	4	1	3	9	8	5	8	10	12	15	7
11	8	6	10	8	5	10	5	6	6	6	4	5	6	5	7	5	6	8	5	8	9	4	3	0	7	8	4	10	7	8	9	6
12	5	6	9	7	6	6	5	4	5	5	5	4	5	5	7	6	5	6	6	6	6	1	1		7	5	3	6	6	10		5
13	6	6	9	8	5	6	3	4	4	5	4	4	4	4	5	4	4	5	3	4	5	4	0	6	7	5	4	6	5	8	8	5
14	5	6	6	8	6	7	4	4	5	6	5	3	4	4	4	9	4	4	4	5	7	3	0	9	5	6	3	6	5	6	11	5
15	4	7	10	6	4	5	5	4	5	6	5	4	4	5	4	6	4	6	5	5	6	3	3	6	3	10	4	6	5	6	13	5
16	4	11	8	6	5	6	9	3	5	8	6	4	4	4	4	5	5	5	3	5	6	3	3	5	4	8	3	8	5	12	17	6
17	4	8	8	9	10	10	8	5	10	8	7	5	5	7	6	6	5	4	4	7	12	6	2	4	10	8	4	7	5	16	10	7
18	6	9	8	10	7	10	5	5	10	8	6	9	6	7	10	6	5	5	5	9	19	7	3	6	16	6	5	9	6	21	12	8
19	10	16	22	16	13	14	15	20	11	14	16	10	13	10	12	8	11	17	20	18	21	10	16	31	28	3	12	25	26	32	11	16
20	25	22	27	36	23	5	17	16	7	16	15	11	14	21	16	13	18	21	25	26	9	16	14	26	31	3	28	22	19	21	9	18
21	17	18	27	24	17	5	14	15	8	29	11	12	11	18	13	12	22	28	28	18	5	7	37	21	26	4	17	14	14	14	14	17
22	20	18	37	23	15	5	22	17	7	8	7	10	11	14	11	10	18	16	31	15	5	6	17	16	28	6	13	14	17	8	16	15
23	16	22	19	23	11	5	10	11	6	8	6	10	9	13	10	7	12	12	14	8	4	5	10	17	18	9	9	14	17	6	12	11
24	10	16	20	22	10	4	6	8	5	8	9	8	6	9	8	5	11	12	10	7	3	5	6	15	12	7	8	11	10	5	7	9
MEDIA	8	11	15	13	9	8	8	9	7	8	7	6	7	8	8	7	8	10	10	9	9	5	6	9	12	7	7	11	10	12	11	
MIN	4	6	6	6	4	4	3	3	4	4	4	3	4	4	4	4	4	4	3	4	3	1	0	0	3	3	3	5	5	5	4	
MAX	25	22	37	36	23	15	22	20	15	29	16	12	14	21	16	13	22	28	31	26	21	16	37	31	31	10	28	25	26	32	17	

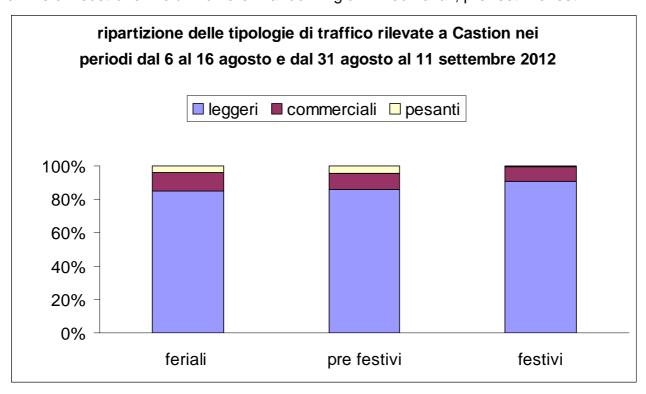
PROV		$\overline{\alpha}$	UE		SI	AZ F		AVE	<u>10</u>		F	PAR4	VETF	α		J	NTA	DM	IS		ME	īŒ)	P	ER O	Ω	TEN	/PON	Ð	FER	(2000)
BL		BELL				MEZ	ZOM	ŒLLE	=	В	0881	מסכ	AZO	IO(N	D)		μg	/m³		dhe	milun	rinesc	enza	set	temb	re-12		CRA	\		MESE
		CAB	TICN																												
														,	SEIT	BMB	Œ20	12													
gg/are	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	GMEDIO
1	10	4	6	5	9																										7
2	6	5	5	5	8																										6
3	6	4	5	4	6																										5
4																															
5	6	3	6	5	7																										5
6	7	3	11	7	8																										7
7	10	4	15	15	14																										12
8	9	3	9	9	13																										9
9	9	5	14	12	15																	-									11 8
10	8 5	4	9	11 9	10 10																										7
12	6	4	8	8	7																										7
13	5	3	11	7	9																										7
14	6	3	10	6	11					-											-										7
15	6	2	12	9	9																										8
16	7	3	12	9	6																										7
17	7	3	14	12	6																										8
18	8	4	15	18	14																										12
19	17	13	16	22	13																										16
20	12	13	14	13	9																										12
21	16	11	9	8	6																										10
22	14	12	7	10	8																										10
23	8	11	6	10	11																										9
24	3	9	6	9	8																										7
MEDIA	8	6	10	10	9																										
MIN	3	2	5	4	6																										
MAX	17	13	16	22	15																										

PRO/		α	<u>lle</u>		SI	AZ R			IIO		P	ARA	VETR	0		U	NTA	DM	S		ME	<u> </u>)	R	RIC	∞	H	VPOI	Œ	R	ROD	2800
BL			COM TVD			VEZZ	MO	BLE	=		(ZON	D(Ó)			μg	/m³		æs	adin	rent o	uv	l	gio	12		CR4	١		MES	£
															L	LGTI	020	12														
gg/are	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	22	30	31	GMEDIO
1			82	54	85	100	31	58	74	111	71	71	63	27	81	39	48	47	63	70	85	30	27	39	35	22	45				67	59
2			67	48	83	91	28	60	61	101	70	54	59	25	64	41	52	50	63	66	79	23	29	42	35	17	50				51	54
3																																
4			48	30	66	73	19	41	63	81	48	27	39	28	55	29	43	38	65	72	7 5	39	32	46	29	13	33				50	45
5			42	29	54	72	18	43	53	77	42	27	47	26	49	23	32	29	56	55	62	37	26	34	22	12	29				46	40
6			39	34	47	68	22	41	52	68	41	26	37	27	47	21	24	33	46	44	54	37	24	35	20	9	27				35	37
7			44	45	63	61	45	55	65	65	45	45	25	25	49	25	31	48	66	51	63	40	21	38	21	14	56				39	44
8			53	50	76	66	47	69	85	59	58	50	35	37	57	31	39	72	72	60	63	44	33	48	33	21	55				55	53
9			52	67	92	99	55	80	94	64	51	67	24	39	57	41	59	70	<i>7</i> 5	69	70	49	43	49	31	44	66				53	60
10			56	84	106	82	65	97	113	80	74	72	34	50	57	47	70	79	98	90	73	60	65	67	49	51	77				62	71
11			67	104	122	88	72	119	131	83	89	84	70	96	53	56	89	119	121	112	66	71	72	69	7 5	65	88				70	87
12			88	139	142	97	99	126	136	72	107	100	77	107	56	71	102	116	140	129	64	77	88	82	84	79	98			86	74	98
13			105	143	156	101	120	131	144	66	113		90	111	58	80	108	118	144	136	72	83	93	83	96	94	109			108	83	106
14			123	153	165	105	135	132	149	93	125	125	79	111	81	87	109	122	151	141	73	76	91	89	101	92	116			107	88	112
15			124	159	168	118	142	134	147	113	124	129	79	92	83	89	111	131	151	150	79	67	95	91	105	93	124			113	96	115
16			116	161	163	120	149	138	151	121	114	132	87	83	81	94	123	139	159	151	77	62	95	92	106	108	137			115	107	118
17			115	160	158	116	145	142	158	117	128	133	86	84	77	102	132	143	171	154	81	67	97	90	106	109	140			113	106	120
18			100	146	186	101	145	139	163	121	131	129	90	64	76	110	136	143	168	152	77	72	94	93	91	113				102	97	117
19			111	151	167	92	149	143	150	111	128	115	77	78	67	116	119	143	167	124	58	59	87	76	76	106				84	62	108
20			98	134	106	82	121	122	140	70	105	91	50	74	59	107	90	105	113	96	52	30	77	49	62	79				78	62	87
21			59	116	107	57	98	104	143	59	113	86	35	89	62	77	79	106	109	105	54	23	70	71	44	47				94	62	80
22			61	98	126	46	91	108	120	58	103	82	34	105	58	72	72	106	99	98	36	20	60	88	42	43				89	50	76
23			62	97	120	37	80	93	107	81	94	73	33	102	47	59	60	99	86	102	37	23	52	65	34	44				86	41	70
24			64	84	110	32	66	83	124	77	91	65	32	97	45	56	55	92	69	97	36	26	43	53	27	52				80	35	65
MEDIA			77	99	116	83	84	98	114	85	90	81	56	69	62	64	78	93	107	101	65	48	61	65	58	58	78			97	65	
MIN			39	29	47	32	18	41	52	58	41	26	24	25	45	21	24	29	46	44	36	20	21	34	20	9	27			78	35	
MAX			124	161	186	120	149	143	163	121	131	133	90	111	83	116	136	143	171	154	85	83	97	93	106	113	140			115	107	

PROV		ΩV	OMUNE STAZ RILEVAVEN								P	YRA	Æ	0		U	NTA	DM	S		ME	Œ		R	RIC	α	Ħ	/POI\	Œ	Fŧ	ROD	2800
BL			COM LIVO			VEZZ	MO	ЭЦЕ			(ZON	D(Q)			μg	m³		ass	adin	rent o	uv	ą	peto	12		CRA	1		MES	£
															A	3051	020	12														
gg/are	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	GMEDIO
1	33	40	65	75	64	49	37	64	57	46	20	85	57	66	76	ങ	34	58	55	70	72	77	63	59	62	57	25	48	55	67	65	57
2	26	31	71	67	72	41	24	61	52	36	21	79	49	63	59	55	32	39	46	54	53	77	71	65	52	65	22	44	55	48	66	51
3																																
4	16	32	52	54	83	41	18	52	42	27	16	53	42	90	52	41	27	35	39	37	47	84	71	45	45	59	25	42	48	44	49	45
5	12	24	41	49	62	34	17	35	38	28	13	50	35	<i>7</i> 5	52	45	21	36	36	43	43	76	94	33	43	58	19	38	43	60	44	42
6	9	19	32	47	52	17	14	35	41	24	12	43	33	59	37	41	25	36	37	33	39	69	90	26	42	58	18	27	30	46	42	37
7	15	31	40	42	50	23	29	43	35	20	15	49	39	53	31	44	26	32	34	37	35	57	63	25	46	48	19	26	28	33	35	36
8	22	37	50	46	70	43	34	41	40	26	25	57	54	59	45	52	29	41	49	54	55	57	70	44	53	60	33	33	55	44	37	46
9	34	51	70	60	82	54	54	53	56	42	34	71	73	76	65	56	35	52	64	63	70	65	71	55	64	65	38	42	70	56	39	57
10	44	65	89	73	92	69	67	71	66	60	44	88	87	86	89	72	45	75	86	79	81	78	77	74	84	55	47	61	72	62	41	70
11	56	85	117	81	103	87	73	89	98	72	59	98	95	94	112	92	65	93	99	97	103	92	86	99	106	52	61	76	89	85	71	87
12	78	105	136	107	120	113	82	106	106	79	85	101	102	107	134	109	84	114	113	113	116	105	98	115	117	63	70	97	103	93	70	101
13	95	128	138	116	127	120	93	115	114	90	96	100	111	109	133	114	102	129	140	128	132	125	112	132	119	<i>7</i> 5	78	111	117	113	70	112
14	99	128	154	130	123	127	99	117	125	93	97	99	113	119	131	114	107	134	135	133	145	133	116	145	122	79	88	116	121	134	66	117
15	102	134	153	142	130	132	104	117	127	96	103	98	115	127	126	98	111	136	137	143	159	156	119	146	123	<i>7</i> 5	95	118	136	136	59	121
16	110	131	159	148	127	124	102	117	119	86	109	104	119	134	130	99	119	141	143	151	162	182	136	143	130	91	100	123	139	133	47	124
17	127	143	149	144	117	106	121	118	108	83	112	107	121	135	126	101	137	142	149	150	160	186	144	142	128	<i>7</i> 5	100	128	135	121	54	125
18	132	146	136	147	115	96	127	118	95	77	124	87	116	133	105	103	139	142	148	150	116	155	144	135	104	70	104	119	133	90	55	118
19	124	124	110	135	100	81	111	90	83	62	99	76	98	117	82	91	130	131	121	120	109	124	101	87	74	71	100	81	96	77	56	99
20	79	95	83	92	67	102	81	72	92	31	70	64	76	81	77	63	90	88	91	87	121	101	88	78	66	75	68	77	93	89	62	81
21	71	88	80	83	68	89	68	68	66	30	97	57	74	79	73	49	78	69	76	87	103	96	73	78	62	69	58	78	90	82	45	74
22	59	<i>7</i> 5	58	72	57	85	60	59	50	35	107	53	60	77	67	44	68	66	56	78	95	85	62	76	50	56	57	68	74	96	34	66
23	57	62	71	63	53	62	61	63	45	33	102	48	59	70	67	42	64	71	68	81	89	<i>7</i> 5	62	71	52	40	52	64	62	74	32	62
24	58	66	72	56	52	47	66	62	46	26	95	50	62	69	55	41	68	69	71	78	83	69	59	63	62	29	48	54	74	67	33	60
MEDIA	63	80	92	88	86	76	67	77	74	52	68	<i>7</i> 5	78	90	84	71	71	84	87	90	95	101	90	84	79	63	58	73	84	80	51	
MIN	9	19	32	42	50	17	14	35	35	20	12	43	33	53	31	41	21	32	34	33	35	57	59	25	42	29	18	26	28	33	32	
MAX	132	146	159	148	130	132	127	118	127	96	124	107	121	135	134	114	139	142	149	151	162	186	144	146	130	91	104	128	139	136	71	

PROV		αV	UE		SI	AZ F		AVE	<u>10</u>		F	YR4	VETF	Ø		l	NTA	DM	IS		ME)	P	RIC	Ω	TE	PON	Ð	FER	(COCC)
BL		BELL				MEZ	70M	CELLE	=			000	D (0	<i>1</i>)			ın	/m³		38	arhin	rento	UV	sat	tenta	re-12		CRA			MESE
		MAG	<u>cav</u>	1									-(-	<u>.</u>			<u> </u>						~ ".	3	-				•		
														;	SETT	BVB	€2 0	12													
gg/are	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	GMEDIO
1	28	54	23	61	22	0	1	0	9	10	- 11	IZ.	Ы	14	Ы	Ю	17	Ю	19	Δ٥	۷۱	~~	ച	24	<u>ا</u>	20		20	23	30	38
2	39	49	22	46	19																										35
3	-	~																													
4	29	43	14	40	15																										28
5	26	54	12	36	13																										28
6	24	58	11	32	11																										27
7	23	57	7	29	6																										24
8	29	52	22	33	17																										31
9	33	50	21	35	18																										31
10	36	58	34	53	26																										41
11	56	99	32	99	39																										51
12	57	70	36	67	51																										56
13	57	<i>7</i> 5	36	77	51																										59
14	ଖ	78	38	84	59																										64
15	62 CC	80	48	84	71				-																						69
16	62	80	50	85	88				-																						73 69
17 18	59 55	81 82	41 35	68 53	98 84																										62
19	40	<u>∞</u> 49	42	<u>35</u>	91				-																						51
20	40	35	48	40	88																										50
21	27	37	60	49	83																										51
22	24	25	63	39	73																										45
23	44	22	60	34	54																										43
24	61	21	57	26	48																										43
MEDIA	42	55	35	51	49																										
MIN	23	21	7	26	6																										
MAX	62	82	63	85	98																										

PROV		ω _ν	(LNE		SI	AZ R		4VE\	ТО		F	ARA	VETR	Ö		ι	NTA	DIM	IS		ME	TOO)	R	ERICI	œ	TEN	PON	ÆD.	R	ROD	2006
BL		CAS	IION TVD			MEZZ	ZOM	ŒLE	=		BE	NZE	Æ(C	H)			μg	/m³		gas	saran	ratog	afia	lu	glio	12		Œ4	١		MES	E
															L	ngn	020	12														
gg/are	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	GMEDIO
1			0.3	08	1.0	0.3	0.7	1.0	06	0.3	0.3	0.5	08	06	0.3	0.4	06	1.7	0.8	0.9	07	0.5	0.7	0.8	0.8		0.7					0.7
2			0.3	0.7	0.6	0.3	0.4	0.7	06	0.3	0.3	0.5	06	0.7	0.3	0.3	06	0.7	0.7	0.8	06	0.7	04	0.6	0.7							0.5
3			0.5	0.7	06	0.3	0.5	0.6	06	0.3	0.3	0.5	0.5	0.6	0.4	0.3	0.5	0.5	0.7	0.7	06	0.5	04	0.6	0.5		0.6					0.5
4			0.5	06	0.7	0.3	0.4	0.6	06	0.3	0.4	0.6	0.7	0.6	0.4	0.4	05	0.7	06	0.7	04	0.3	04	0.6	0.5							0.5
5			0.4	0.8	0.7	0.3	0.5	0.5	07	0.3	0.4	0.6	05	0.5	04	0.4	05	06	08	0.9	04	0.3	0.5	0.5	06							0.5
6			04	06	0.8	0.4	0.4	06	08	0.3	0.4	0.6	0.5	0.5	0.5	0.4	07	0.7	0.7	1.1	0.5	0.6	0.5	07	0.7							0.6
7			0.5	0.7	1.0	0.5	0.3	04	09	0.4	0.4	0.6	08	0.7	04	0.5	07	08	1.7	1.2	0.5	0.3	0.5	0.7	Ω9		0.4					0.7
8			0.6	0.7	0.8	0.6	0.4	0.6	07	0.7	0.4	0.6	1.0	0.8	0.4	0.5	06	0.7	0.9	0.9	06	0.4	0.6	1.3	0.8		0.6					0.7
9			0.4	0.6	0.8	04	0.3	0.5	05	0.4	0.4	0.6	0.8	0.8	04	0.5	0.5	06	0.7	1.0	0.5	0.4	04	0.7	0.9		0.6					0.6
10			0.6	0.5	0.5	0.3	0.5	0.5	0.5	0.3	0.4	0.6	0.8	0.7	0.5	0.4	04	0.6	0.8	0.8	0.5	0.4	0.3	06	0.8							0.5
11			0.4	0.6	04	0.5	0.3	0.5	05	0.4	0.3	0.5	0.6	0.8	0.4	0.3	0.5	04	0.6	0.7	0.5	0.3	0.4		0.6		0.9					0.5
12			0.4	0.7	0.4	0.4	0.4	0.4	0.5	0.5	0.4	0.5	0.7	0.5	0.6	0.4	04	04	0.5	0.6	0.6	0.4	0.3		0.5							0.5
13			0.3	0.5	0.4	0.3	0.3	0.4	04	0.4	0.4	0.5	0.5	0.6	0.4	0.3	04	0.3	0.5	0.4	0.6	0.4	0.3	0.3		0.4	0.6					0.4
14			0.3	0.4	04	0.4	0.4	0.4	03	0.4	0.5	0.5	0.5	0.4	0.4	0.3	04	04	0.4	0.4	04	0.4	0.4	8.0	00	0.4	0.7					0.4
15			0.3	03	03	0.4	0.3	0.5	03 03	0.4	0.6	0.5	0.5	0.5	0.4	0.3	0.5	04	0.4	0.4	04	0.3	0.4	0.6	0.8 0.7	0.5	0.7					
16 17			0.5 0.5	0.3 0.4	04 05	0.3 0.4	0.3	0.3 0.4	04	0.4	06 06	04	0.5 0.5	0.5 0.6	0.4 0.4	0.3	0.4 0.4	04 04	0.4 0.5	0.4 0.5	04 04	03	0.4 0.4	0.6 0.7	0.6	0.5 0.5	0.8 0.5					0.4 0.5
			0.6	0.5	0.4	0.5	0.4	04	04	0.4	0.8	0.6	0.7	0.7	0.5	0.5	04	06	0.6	0.5	04	0.4	0.5	0.8	0.7	0.7	us					0.5
18 19			0.6	0.4	0.5	0.6	0.5	04	07	0.6	1.0	0.5	06	0.9	0.5	0.5	1.2	0.9	0.7	0.6	0.7	0.5	0.6	0.9	u/	0.7	0.6					0.7
20			0.8	0.5	0.5	0.6	0.5	04	07	1.0	1.1	0.7	0.7	0.7	0.5	0.4	0.7	1.0	0.9	1.2	0.9	0.9	0.9	27		0.9	u.o					08
21			1.4	1.0	0.6	0.7	0.9	1.3	1.2	1.1	0.8	1.1	08	0.7	0.5	1.3	09	0.9	1.2	0.9	0.7	0.8	0.9	1.7		1.9	0.5					1.0
22			1.2	0.6	04	0.8	0.7	1.1	07	1.3	0.5	1.0	09	0.4	0.4	0.8	08	1.4	1.3	0.9	0.5	0.9	0.9	0.8		1.5	4.0					09
23			1.3	1.0	0.3	0.8	0.7	1.2	07	0.9	0.6	0.9	0.7	0.3	0.4	0.9	09	1.0	0.9	1.1	0.7	0.7	1.0	0.7		1.3						0.8
24			1.0	0.7	0.3	0.7	0.7	0.9	04	0.4	0.4	0.6	0.7	0.4	04	0.8	1.2	0.9	1.2	1.2	0.5	0.6	1.1	0.7		1.0						0.7
MEDIA			0.6	0,6	0.6	0.5	0.5	0.6	06	0.5	0.5	0.6	0.7	0.6	0.4	0.5	0.6	0.7	0.8	0.8	0.5	0.5	0.6	0.8	0.7	0.9	0.6					
MIN			0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.5	0.3	0.3	0.3	0.4	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.5	0.4	0.4					
MAX			1.4	1.0	1.0	0.8	09	1.3	1.2	1.3	1.1	1.1	1.0	09	06	1.3	1.2	1.7	1.7	1.2	09	0.9	1.1	27	0.9	1.9	0.9					


PROV		ω _ν	LNE		SI	AZ R		AVE\	ТО		F	ARA	VET R	O		U	NTA	DIM	IS		ME	госс		R	ERICI	œ	TEN	/PON	VED.	FE	RODO	0088.
BL		CAS				MEZZ	20M 0	CBLE	Ē		BE	NZEI	E(C	H)			μg	/m³		gas	scron	ratogr	afia	ą	posto	-12		Œ4	١		MES	E
															A	305 1	020	12														
gg/are	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	GMEDIO
1	0.4	08	1.3	1.2	26	0.8	0.7	0.6	07	0.5	0.6	0.5	06	05	06	0.9	04	06	1.1	0.7	09	0.3	0.7	1.0	1.1	0.9	0.7	1.0	0.9	0.9	1.1	0.8
2	0.4	Ω9	1.0	0.5	22	0.7	0.8	0.6	06	05	06	0.5	06	05	0.5	0.7	Ω5	09	1.1	0.9	09	0.3	0.5	0.7	1.0	0.8	0.6	0.7	0.8	1.0	1.2	0.8
3	05	0.8	1.1	1.9	1.1	0.6	0.7	0.6	07	0.5	0.5	0.4	06	0.4	0.6	0.7	04	0.7	1.0	0.9	Ω9	0.5	07	0.6	1.2	0.7	0.5	0.7	0.8	1.0	1.3	0.8
4	0.5	0.7	0.9	27	0.8	0.6	0.8	0.5	06	05	0.5	0.5	06	04	0.6	0.6	03	06	0.7	0.9	Ω9	0.4	06	0.6	1.1	0.7	0.5	0.6	0.8	1.1	1.5	0.7
5	0.5	08	0.9	0.9	1.4	0.7	0.7	0.6	Q5	0.5	0.5	0.5	06	0.3	06	0.7	Q5	06	08	0.7	Ω7	0.4	04	0.7	1.0	0.8	0.5	0.6	0.7	08	1.5	0.7
6	06	08	0.9	1.5	1.4	0.8	0.8	08	06	0.5	0.5	0.6	07	0.4	06	0.8	04	0.5	06	0.9	0.8	0.4	04	08	08	0.7	0.6	0.9	0.9	0.7	1.4	0.7
7	0.6	1.2	1.3	1.5	1.0	1.5	0.8	0.9	08	0.7	0.5	0.6	08	0.4	0.6	0.8	03	0.5	0.8	1.2	1.5	0.4	0.4	1.0	1.3	0.7	0.9	1.3	1.0	1.2	22	0.9
8	0.6	0.9	12	1.8	1.6	0.9	0.7	0.7	1.2	0.6	0.6	0.6	0,5	0.6	0.5	0.8	05	0.5	0.5	0.7	1.4	0.7	0.5	0.9	1.1	0.8	0.7	1.0	1.4	1.2	1.9	0.9
9	0.5	0.7	0.7	28	22	0.6	0.7	0.7	0.7	0.5	0.6	0.7	06	0.4	0.6	0.8	0.5	0.6	0.5	0.5	0.8	0.4	0.4	1.2	0.9	0.8	0.6	0.6	0.7	0.9	1.5	0.8
10	0.5	0.6	0.7	38	25	0.6	0.6	0.5	06	0.5	0.7	0.5	0.5	04	0.6	0.6	0.5	0.5	0.6	0.6	0.6	0.4	0.4	0.8	0.7	0.9	0.4	0.5	0.7	0.8	1.6	0.8
11		0.6	0.7	25	29	0.6	0.6	0.6	06	0.5	0.5	0.5	0.5	0.4	0.7	0.6	05	0.6	0.5	0.6	0.6	0.9	0.5	0.5	0.7	0.9	0.5	0.5	0.7	0.6	1.5	0.8
12	05	0.6	1.0	1.5	09	0.7	0.5	0.5	04	0.4	0.5	0.5	0.5	05	0.8	0.5	06	0.6	0.5	0.6	0.6	0.4	0.5	0.6	0.9	1.1	0.5	0.6	0.6	1.0	1.1	_
13 14	0.5 0.5	0.5 0.5	1.0	9.8 18.5	36 90	0.5 0.6	0.5 0.5	0.4	Q5 Q4	0.4 0.4	0.4 0.5	0.4 0.4	0.5 0.4	0.4	0.8 0.6	0.6 0.4	03 04	04 04	0.5 0.4	0.4 0.4	0.5 0.4	0.4 0.4	0.4	0.6 0.7	0.7 0.6	0.7 0.6	0.5 0.5	0.4 0.4	0.5 0.5	1.2 0.7	1.1 1.2	0.9
15	0.5	0.5	1.1	37	1.3	0.7	0.5	04	Q5	0.6	0.5	0.4	04	0.5	0.5	0.6	04	04	0.4	0.4	0.5	0.5	0.3	0.6	0.4	0.7	0.7	0.5	0.5	Q6	1.3	0.7
16	0.5	Q5	7.6	34	0.8	0.6	0.7	04	us 08	0.5	0.4	0.5	04	0.4	0.6	0.4	Q4	06	0.5	0.4	0.6	Q5	0.4	0.5	0.5	0.8	0.5	0.6	0.5	07	1.5	0.9
17	0.4	0.6	23	40	1.3	0.8	0.7	0.5	07	0.5	0.5	0.5	04	04	0.5	04	0.5	04	0.5	0.4	1.1	0.5	0.9	0.6	0.7	0.7	0.6	0.7	0.5	1.0	1.3	0.8
18	05	0.6	32	242	1.6	0.8	0.6	0.6	Q5	0.5	0.6	0.6	04	0.6	0.9	0.4	Q4	04	0.5	0.7	1.1	0.6	0.5	0.6	0.9	0.4	0.6	0.7	0.6	1.3	1.2	1.5
19	0.8	0.9	44	10.8	1.5	0.9	0.8	0.7	06	0.5	0.7	0.9	0.8	0.6	1.3	0.6	1.1	0.9	0.7	1.0	1.2	0.7	0.7	1.0	1.6	0.4	0.7	1.0	0.9	1.5	1.3	1.3
20	1.3	30	21	30	1.1	0.8	1.0	1.0	04	0.8	1.0	0.8	0.7	1.1	1.1	20	1.3	1.3	1.3	1.5	1.0	1.1	1.8	1.5	1.6	04	1.6	1.3	1.5	1.7	1.2	1.3
21	1.7	27	35	29	1.3	0.6	1.3	1.2	07	1.0	1.2	0.9	Q9	1.1	1.3	1.3	0.9	1.9	1.5	1.7	0.6	0.7	1.4	1.5	1.7	04	1.7	1.2	1.3	1.7	1.1	1.4
22	1.6	1.3	48	53	12	0.6	1.1	1.0	08	0.7	0.8	0.7	0.7	1.0	1.2	0.8	22	1.8	1.7	1.3	04	0.5	21	1.7	1.4	0.9	1.2	1.1	1.2	1.4	1.5	1.4
23	21	1.3	25	36	0.9	0.7	1.0	1.7	09	0.7	0.5	0.8	08	0.9	1.4	1.0	1.6	1.1	1.3	1.7	03	0.4	1.7	1.5	1.5	0.7	0.9	1.0	21	1.0	1.4	1.3
24	1.4	1.5	1.4	34	0.8	0.6	0.9	1.1	06	0.9	0.7	1.0	06	0.8	0.9	0.5	1.1	0.9	0.9	0.9	03	0.4	1.5	1.5	1.1	0.9	1.1	1.1	1.8	1.2	1.2	1.1
MEDIA	0.8	1.0	1.9	48	1.9	0.7	0.8	0.7	06	0.6	0.6	0.6	06	0.6	0.8	0.7	07	0.7	0.8	0.8	0.8	0.5	0.8	0.9	1.0	0.7	0.7	0.8	0.9	1.1	1.4	
MIN	0.4	0.5	0.7	0.5	0.8	0.5	0.5	0.4	04	0.4	0.4	0.4	04	0.3	0.5	0.4	03	04	0.4	0.4	0.3	0.3	0.3	0.5	0.4	0.4	0.4	0.4	0.5	0.6	1.1	
MAX	21	30	7.6	242	90	1.5	1.3	1.7	1.2	1.0	1.2	1.0	Q9	1.1	1.4	20	22	1.9	1.7	1.7	1.5	1.1	21	1.7	1.7	1.1	1.7	1.3	21	1.7	22	

PRO/		ΩΛ	UE		SI	AZ F		AVE	ND		F	PAR4	VETF	α		l	NTA	DM	IS		ME	īŒ)	P	ER O	Ω	TEN	/PON	Œ.	PER	(2000)
BL		BELL				MEZ	ZOM	ŒL	Ē		BE	NB	Æ(Ç	;H)			un	/m³		CE	scron	ratog	afia	set	temb	re-12		CRA			MESE
		CAS	IICN																	3											
														;	SEIT	EMB	Œ20	12													
gg/are	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	GMEDIO
1	12	08	1.1	08	1.1																										1.0
2	12	08	0.9	0.7	1.0																										0.9
3	1.1	Ω9	0.9	0.9	1.1																										1.0
4	1.1	Ω9	1.1	0.8	1.0																										1.0
5	1.1	08	1.1	0.8	1.0																										1.0
6	1.1	08	12	0.8	1.0																										1.0
7	12	0.7	1.4	1.0	1.3																										1.1
8	12	Ω9	1.5	1.1	1.7																										1.3
9	12	08	1.1	1.0	1.0																										1.0
10	1.1	08	0.8	1.1	1.1																										1.0
11	1.0	Ω8	1.0	09	09																										0.9
12	09	08	0.8	08	0.7																										0.8
13	0.9	08	0.9	0.8	0.8																										0.8
14	1.0	08	0.8	0.7	08																										0.8
15	1.0	07	0.9	0.8	08																										0.8
16	12	07	1.1	09	0.8																										0.9
17	1.4	07	12	0.8	0.8																										1.0
18	12	08	1.6	1.4	09																										12
19	1.4	1.2	1.6	1.8	1.3																										1.5
20	1.4	1.3	1.4	1.5	1.0																										13
21	1.5	1.3	1.3	1.1	0.8					-																					12
22	1.7	1.0	0.8	1.1	08																										1.1
23	1.4	1.1	0.8	0.9	08																										1.0
24	0.8	1.2	0.7	1.1	12																										1.0
MEDIA	12	08	12	0.9	12																										
MN	1.0	0.8	0.9	0.9	0.9																										
MAX	1.4	1.1	12	1.2	1.0																										

ALLEGATO C: MONITORAGGIO DEL TRAFFICO VEICOLARE

Durante la campagna di monitoraggio è stato effettuato il rilevamento del traffico stradale in via San Cipriano, poco prima dell'incrocio per Modolo e sono stati ricostruiti i flussi di traffico medi orari differenziati in feriali, prefestivi e festivi e le velocità medie di percorrenza, con ripartizione dei veicoli in mezzi leggeri (auto, moto, motocicli), commerciali (furgoni) e pesanti (autoarticolati, autobus, ecc.).

I flussi di traffico sono stati rilevati attraverso il classificatore radar del traffico Easydata. La strumentazione necessaria per la rilevazione resta in loco per almeno una settimana al fine di ricostruire i volumi differenziandoli in giorni medi feriali, pre-festivi e festivi.

Il traffico leggero è la componente principale, con una percentuale massima del 91% nelle giornate festive che si abbassa leggermente fino all'85% dei giorni feriali.

Analizzando gli andamenti orari dei flussi di traffico differenziando la giornata feriale da quella prefestiva (sabato e vigilia di ferragosto) e festiva (domenica e ferragosto) emerge

che nel giorno feriale medio sono evidenti due picchi di traffico, uno meno pronunciato ma più protratto al mattino (7:00-9:00) ed un secondo nel pomeriggio (17:00-19:00); Nelle giornate prefestive e festive il volume totale di traffico è superiore (4316 e 4120 passaggi rispettivamente contro i 3665 dei giorni feriali) e presenta picchi mattutini e serali più delineati. Tale andamento è probabilmente riconducibile al flusso turistico in direzione Nevegal, più intenso nei fine settimana.

ARPAV
Agenzia Regionale
per la Prevenzione e
Protezione Ambientale
del Veneto
Direzione Generale
Via Matteotti, 27
35137 Padova
Italy
Tel. +39 049 823 93 01
Fax +39 049 660 966
E-mail: urp@arpa.veneto.it
E-mail certificata: protocollo@arpav.it
www.arpa.veneto.it