
Dipartimento Provinciale di Belluno Servizio Sistemi Ambientali Ufficio reti di Monitoraggio

Indagine sulla qualità dell'aria Comune di Trichiana

20 dicembre 2008 21 aprile 2009

ARPAV

Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto

Via F. Tomea, 5 32100 Belluno Italy Tel. +39 0437 935500 Fax +39 0437 30340 e-mail: dapbl@arpa.veneto.it

32100 Belluno Italy Tel. +39 0437 935500 Fax +39 0437 30340

Responsabile del Procedimento:

DIPARTIMENTO PROVINCIALE DI BELLUNO

Indagine sulla qualità dell'aria a Trichiana: anno 2008 - 2009

1 - Premessa

Il dipartimento A.R.P.A.V. di Belluno, nell'ambito di una serie di indagini svolte sul territorio della valbelluna con il coordinamento del tavolo tecnico zonale, ha effettuato un'indagine sulla qualità dell'aria a Trichiana in loc. Cavassico, in un piazzale adibito a parcheggio. Il monitoraggio si è svolto dal 20 dicembre 2008 al 21 aprile 2009.

La presente relazione illustra in modo sintetico i risultati rilevati in riferimento ai limiti di legge vigenti e offre una breve rappresentazione grafica per evidenziare meglio l'andamento degli inquinanti nel corso dell'indagine.

Le coordinate geografiche del sito sono GBO 17443327; 5108033.

Per il monitoraggio è stato utilizzato un laboratorio mobile attrezzato con specifiche apparecchiature aventi le caratteristiche tecnico analitiche di seguito descritte.

2 - Parametri monitorati

I dati del monitoraggio sono riferiti agli inquinanti di seguito indicati.

Mezzo mobile

- Polveri (PM10)
- Monossido di carbonio (CO)
- Ossidi d'azoto, in particolare biossido d'azoto (NO2)
- Biossido di zolfo (SO₂)
- Ozono (O₃)
- Benzene toluene xileni

3 - Tecniche analitiche

Per gli inquinati tradizionali monitorati le tecniche di misura corrispondono alle specifiche dettate dalla normativa italiana relative ai sistemi analitici in continuo.

Tali sistemi analitici si riconducono a:

- Analisi per il controllo delle polveri (PM10): frazionamento delle polveri su teste di prelievo certificate secondo il metodo CEN 12341; determinazione per assorbimento della radiazione β
- Analisi per il controllo del monossido di carbonio: determinazione per assorbimento I.R
- Analisi per il controllo degli ossidi d'azoto, in particolare del biossido d'azoto: determinazione per emissione a chemiluminescenza

- Analisi per il controllo dell'anidride solforosa: determinazione per emissione a fluorescenza
- Analisi per il controllo dell'ozono: determinazione per assorbimento U.V
- Analisi per il controllo dei composti organici in particolare benzene toluene xileni (BTX): determinazione in gascromatografia capillare su fiamma d'idrogeno, previo arricchimento del campione d'aria su specifiche trappole di carbone grafitato e successivo desorbimento termico.

4 - Caratteristiche degli inquinanti monitorati

particolato che ha un diametro inferiore a 2,5 µm.

Polveri (PM10)

Materiale particolato (PM) è il termine usato per indicare presenze solide o di aerosol in atmosfera, generalmente formate da agglomerati di diverse dimensioni, composizione chimica e proprietà, derivanti sia da fonti antropiche che naturali. Le differenti classi dimensionali conferiscono alle particelle caratteristiche fisiche e geometriche assai varie. Le polveri PM10 rappresentano il particolato che ha un diametro inferiore a 10 μm, mentre le PM2,5, che costituiscono in genere circa il 60-80% delle PM10, rappresentano il

Vengono dette polveri inalabili quelle in grado di penetrare nel tratto superiore dell'apparato respiratorio dal naso alla laringe.

Parte delle particelle che costituiscono le polveri atmosferiche è emessa come tale da diverse sorgenti naturali ed antropiche (particelle primarie); parte invece deriva da una serie di reazioni chimiche e fisiche che avvengono nell'atmosfera (particelle secondarie).

L'abbattimento e/o l'allontanamento delle polveri è legato in gran parte alle meteorologia. Pioggia e neve abbattono le particelle, il vento le sposta anche sollevandole, mentre le dinamiche verticali connesse ai profili termici e/o eolici le allontanano.

Le più importanti sorgenti naturali sono così individuate:

- incendi boschivi
- polveri al suolo risollevate e trasportate dal vento
- aerosol biogenico (spore, pollini, frammenti vegetali, ecc.)
- emissioni vulcaniche
- aerosol marino.

Le più rilevanti sorgenti antropiche sono:

- processi di combustione di legno, derivati del petrolio, residui agricoli
- emissioni prodotte in vario modo dal traffico veicolare (emissioni dei gas di scarico, usura dei pneumatici, dei freni e del manto stradale)
- processi industriali
- emissioni prodotte da altri macchinari e veicoli (mezzi di cantiere e agricoli, aeroplani, treni, ecc.).

Una volta emesse, le polveri PM10 possono rimanere in sospensione nell'aria per circa dodici ore, mentre le particelle a diametro sottile, ad esempio 1 µm, possono rimanere in circolazione per circa un mese. La frazione fine delle polveri nei centri urbani è prodotta principalmente da fenomeni di combustione derivanti dal traffico veicolare e dagli impianti di riscaldamento.

Il particolato emesso dai camini di altezza elevata può essere trasportato dagli agenti atmosferici anche a grandi distanze. Per questo motivo parte dell'inquinamento di fondo riscontrato in una determinata città può provenire da una fonte situata anche lontana dal centro urbano. Nei centri urbani l'inquinamento da polveri fini, che sono le più pericolose per la salute, è essenzialmente dovuto al traffico veicolare ed al riscaldamento domestico.

Le dimensioni delle particelle in sospensione rappresentano il parametro principale che caratterizza il comportamento di un aerosol. Dato che l'apparato respiratorio è come un canale che si ramifica dal punto di inalazione naso o bocca, sino agli alveoli con diametro sempre decrescente, si può immaginare che le particelle di dimensioni maggiori vengono trattenute nei primi stadi, mentre quelle sottili penetrano sino agli alveoli. Il rischio determinato dalle particelle è dovuto alla deposizione che avviene lungo tutto l'apparato respiratorio, dal naso agli alveoli.

L'impatto si ha quando la velocità delle particelle si annulla per effetto delle forze di resistenza inerziale alla velocità di trascinamento dell'aria, che decresce dal naso sino agli alveoli. Questo significa che procedendo dal naso o dalla bocca attraverso il tratto tracheobronchiale sino agli alveoli, diminuisce il diametro delle particelle che penetrano e si depositano.

Monossido di Carbonio (CO)

Il monossido di carbonio (CO) è un gas incolore, inodore ed insapore prodotto dai processi di combustione incompleta di materiali contenenti carbonio. Il CO emesso dai veicoli subisce nell'atmosfera poche reazioni, essendo notevolmente stabile ed avendo un tempo di permanenza di quattro mesi circa. La sua concentrazione decresce progressivamente all'aumentare della distanza dalle sorgenti di emissione, cioè principalmente dalle strade adibite a circolazione autoveicolare.

Le fonti più importante di CO sono il traffico motorizzato, gli insediamenti produttivi e le abitazioni. La sua produzione varia in relazione al tipo di veicolo, essendo maggiore nei motori a benzina rispetto ai diesel che funzionano con una maggiore quantità di aria, realizzando così una combustione più completa. La produzione di questo gas dipende inoltre dal regime del motore, risultando maggiore in avviamento, in decelerazione ed al minimo, mentre è minore a velocità di crociera. Nel traffico urbano quindi la quantità di CO prodotta dai veicoli è relativamente elevata a causa delle frequenti decelerazioni ed accelerazioni, nonché dalle soste con il motore al minimo. La concentrazione di CO nei gas di scarico è inoltre influenzata dal sistema di alimentazione del motore adottato, dalla sua regolazione e dalla presenza o meno dei dispositivi di limitazione delle emissioni. Il progressivo rinnovo del parco autoveicolare ed i provvedimenti di fluidificazione del traffico hanno portato, a parità di veicoli circolanti, ad una riduzione delle emissioni.

Biossido di Azoto (NO2)

Pur essendo presenti in atmosfera diverse specie di ossidi di ozoto, per l'inquinamento dell'aria si fa riferimento principalmente al monossido di azoto (NO), al biossido (NO2) ed alla loro somma pesata.

La principale fonte antropogenica di ossidi di azoto è la combustione ad alta temperatura, come quella dei motori dei veicoli: l'elevata temperatura che si origina durante lo scoppio provoca la reazione fra l'azoto dell'aria e l'ossigeno formando monossido di azoto.

La quantità prodotta cresce con la temperatura di combustione e con la velocità di raffreddamento dei gas prodotti, che impedisce la decomposizione in azoto ed ossigeno. Le miscele "ricche", cioè con poca aria, danno luogo ad emissioni con limitate concentrazioni di monossido di azoto a causa della bassa temperatura raggiunta nella camera di combustione, ma originano elevate emissioni di idrocarburi e monossido di carbonio per effetto della combustione incompleta. Miscele "povere", cioè con elevata quantità di aria, determinano basse concentrazioni di NO nelle emissioni, ma impediscono una buona resa del motore a causa dell'eccesso di aria che raffredda la camera di combustione. Quando i fumi vengono mescolati con aria allo scarico si forma una significativa quantità di biossido di azoto per ossidazione del monossido ad opera dell'ossigeno. Altre importanti fonti di ossidi di azoto sono gli insediamenti produttivi, gli impianti domestici e le pratiche agricole che utilizzano fertilizzanti azotati a causa dei

processi ossidativi dell'ammoniaca.

Ossidi di Zolfo (SO_X)

Gli ossidi di zolfo presenti in atmosfera sono le anidridi solforosa (SO_2) e solforica (SO_3) con predominanza della prima; questi composti vengono anche indicati con il termine comune SO_x . L'anidride solforosa o biossido di zolfo è un gas incolore, irritante, non infiammabile, molto solubile in acqua e dall'odore pungente. Dato che è più pesante dell'aria tende a stratificare nelle zone più basse.

Il biossido di zolfo si forma nel processo di combustione per ossidazione dello zolfo presente nei combustibili fossili quali carbone, olio combustibile e gasolio. Le fonti di emissione principali sono legate alla produzione di energia, agli impianti termici, ai processi industriali ed al traffico. L'anidride solforosa è il principale responsabile delle "piogge acide", perché tende a trasformarsi in anidride solforica e, in presenza di umidità, in acido solforico. In particolari condizioni meteorologiche e in presenza di quote di emissioni elevate può diffondersi nell'atmosfera ed interessare territori situati anche a grandi distanze.

Ozono (O₃)

L'ozono è un gas irritante di colore bluastro, costituito da molecole instabili formate da tre atomi di ossigeno; queste molecole si scindono facilmente liberando ossigeno molecolare (O_2) ed un atomo di ossigeno estremamente reattivo

$$O_3 \rightarrow O_2 + O$$

Per queste sue caratteristiche l'ozono è quindi un energico ossidante in grado di demolire sia materiali organici che inorganici.

L'ozono presente nella bassa troposfera è principalmente il prodotto di una serie complessa di reazioni chimiche di altri inquinanti presenti nell'atmosfera detti precursori, nelle quali interviene l'azione dell'irraggiamento solare. I principali precursori coinvolti sono gli ossidi di azoto ed i composti organici volatili (COV).

La produzione di ozono in troposfera per reazione chimica ha inizio con la fotolisi del biossido di azoto, ovvero la scissione di questa molecola da parte della radiazione solare, hn, con lunghezza d'onda inferiore a 430 nm, in monossido d'azoto ed ossigeno atomico:

$$NO_2 + hu \rightarrow NO + O$$
 (1)

seguita dalla combinazione dell'ossigeno atomico con ossigeno atmosferico:

$$0 + 0_2 \rightarrow 0_3$$
 (2)

Una volta prodotto l'ozono può a sua volta reagire con il monossido di azoto formatosi dalla reazione (1) per riformare il biossido di azoto di partenza:

$$O_3 + NO \rightarrow NO_2 + O_2$$
 (3)

L'ozono viene quindi prodotto dalla reazione (2) e successivamente rimosso dalla reazione (3) in un ciclo a produzione teoricamente nulla.

In troposfera sono però presenti specie molto reattive chiamate "radicali perossialchilici", convenzionalmente indicati come RO₂, prodotte dalla ossidazione di idrocarburi ed altri composti organici volatili. Il monossido di azoto reagisce con questi radicali secondo la reazione generale:

$$NO + RO_2 \rightarrow NO_2 + RO$$
 (4)

In presenza di radicali perossialchilici quindi, la reazione (4) risulta competitiva rispetto alla reazione (3) la quale non ha modo di avvenire, essendo uno dei reagenti, il monossido di azoto, rimosso dalla reazione (4); l'ozono prodotto dalla sequenza di reazione (1) e (2) può quindi accumularsi in atmosfera.

I precursori coinvolti nel ciclo dell'ozono possono essere di origine antropogenica a seguito di combustioni ed evaporazione di solventi organici o derivare da sorgenti naturali di emissione quali incendi e vegetazione.

Nei centri urbani gli inquinanti coinvolti nella produzione di ozono derivano principalmente dal traffico veicolare. Nella complessa serie di reazioni coinvolgenti NO_X e composti organici volatili, i vari COV hanno effetti differenti; tra i più reattivi vanno ricordati il toluene, l'etene, il propene e l'isoprene. Dopo l'emissione i precursori si disperdono nell'ambiente in maniera variabile a seconda delle condizioni atmosferiche. Affinché dai precursori, con l'azione della radiazione solare, si formi ozono in quantità apprezzabili, occorre un certo periodo di tempo che può variare da poche ore a giorni. Questo fa sì che le concentrazioni di O_3 in un dato luogo non siano linearmente correlate alle quantità di precursori emessi nella zona considerata. Inoltre, visto il tempo occorrente per la formazione di ozono, le masse d'aria contenenti O_3 , COV ed NO_X possono percorrere notevoli distanze, anche centinaia di chilometri, determinando effetti in aree diverse da quelle di produzione. Da ciò deriva che il problema dell'inquinamento da ozono non può essere valutato strettamente su base locale, ma deve essere considerato su ampia scala.

Le concentrazioni di ozono dipendono quindi notevolmente dalle condizioni atmosferiche; le reazioni che portano alla sua formazione sono reazioni fotochimiche e quindi le concentrazioni dell'inquinante aumentano con il crescere della radiazione solare, mentre diminuiscono con l'aumentare della nuvolosità. La conseguenza è che i valori massimi di concentrazione di ozono si registrano nel tardo pomeriggio estivo.

Composti organici aromatici

Benzene (C₆H₆)

Il benzene è un idrocarburo aromatico strutturato ad anello esagonale ed è costituito da sei atomi di carbonio e sei atomi di idrogeno. Anche conosciuto come benzolo, rappresenta la sostanza aromatica con la struttura molecolare più semplice e per questo lo si può definire il composto-base della classe degli idrocarburi aromatici.

Il benzene a temperatura ambiente si presenta come un liquido incolore che evapora all'aria molto velocemente. E' una sostanza altamente infiammabile.

La sua presenza nell'ambiente deriva sia da processi naturali che da attività umane. Le fonti naturali forniscono un contributo relativamente esiguo rispetto a quelle antropogeniche e sono dovute essenzialmente agli incendi boschivi. La maggior parte del benzene presente nell'aria è invece un sottoprodotto delle attività umane.

Le principali cause di esposizione al benzene sono le combustioni incomplete.

Per quanto riguarda l'apporto dovuto al traffico, predominano le emissioni dei mezzi a benzina rispetto ai diesel. Per i veicoli a benzina, circa il 95% dell'inquinante deriva dai gas di scarico, mentre il restante 5% dall'evaporazione del carburante dal serbatoio e dal carburatore durante le soste e i rifornimenti.

Toluene (C₇H₈)

Il toluene, idrocarburo aromatico noto anche come toluolo, è il più semplice rappresentante della classe degli alchilbenzeni. È un liquido volatile ed incolore dall'odore caratteristico fruttato e pungente. Trova utilizzo in sostituzione del più tossico benzene, cui somiglia sotto molti aspetti ed inoltre sia come reattivo che come solvente per sciogliere resine, grassi, oli, vernici, colle e coloranti nonché, occasionalmente, come agente

pulente.

Può essere contenuto nella benzina in funzione anti-detonante, ossia per aumentare il numero di ottano.

Xilene (C₈H₁₀)

Con il termine xileni si fa riferimento ad un gruppo di tre derivati del benzene indicati con i suffissi orto, meta e para. È un liquido incolore e di odore gradevole che è facilmente incendiabile.

Lo xilene è usato come solvente nella stampa, nella produzione di gomma e cuoio nonché di acido tereftalico che è un monomero dell'industria dei polimeri. Inoltre trova utilizzo come agente sgrassante e come diluente per vernici.

5 - Il quadro normativo

L'esigenza di salvaguardare la salute e l'ambiente dai fenomeni inquinamento atmosferico ha ispirato un corpo normativo piuttosto complesso ed articolato in una serie di provvedimenti volti alla definizione di:

- valori limite degli inquinanti per la protezione della salute umana e degli ecosistemi;
- soglie di informazione e di allarme;
- margini di tolleranza, intesi come percentuale di scostamento dal valore limite accettabili nei periodi precedenti l'entrata in vigore del limite stesso;
- obiettivi di qualità e a lungo termine.

La normativa di riferimento si basa sul D.lgs 351/99 e trova sviluppo principalmente nel D.M. 60/02 e nel D.lgs 183/04.

Il D.M. 60/02, in particolare stabilisce per biossido di zolfo, biossido di azoto, ossido di azoto, polveri PM10, piombo, monossido di carbonio e benzene i valori limite con i rispettivi margini di tolleranza. Il successivo D.lgs 183/04 detta norme e limiti per l'ozono.

A completamento del quadro normativo, per metalli e idrocarburi policiclici aromatici è dato dal D.Lgs. 3 agosto 2007 N. 152.

Il quadro riassuntivo dei valori di riferimento è riportato nelle tabelle seguenti nelle quali si considerano i valori limite e le soglie d'allarme per ciascun tipo di inquinante, per tipologia d'esposizione (acuta o cronica) e in base all'oggetto della tutela, a seconda che si tratti della protezione della salute umana, della vegetazione o degli ecosistemi. Accanto ai nuovi limiti introdotti dal D.M. 60/02 nella tabella sono indicati quelli ancora in vigore per effetto di provvedimenti legislativi ancora validi in via transitoria ai sensi dell'art. 38 del decreto stesso; nell'ultima colonna è riportato il periodo di validità di tali limiti.

Tabella 1: quadro complessivo dei valori limite per l'esposizione acuta

INQUINANTE	TIPOLOGIA	CONCENTRAZIONE	RIFERIMENTO
SO ₂	Soglia di allarme*	500 ug/m³	DM 60/02
SO ₂	Limite orario da non superare più di 24 volte per anno civile	350 ug/m³	DM 60/02
SO ₂	Limite di 24 h da non superare più di 3 volte per anno civile	125 ug/m³	DM 60/02
NO ₂	Soglia di allarme*	400 ug/m³	DM 60/02

NO ₂	Limite orario da non superare più di 18 volte per anno civile	1 gennaio 2008: 220 ug/m³ 1 gennaio 2009: 210 ug/m³ 1 gennaio 2010: 200 ug/m³	DM 60/02
PM10	Limite di 24 h da non superare più di 35 volte per anno civile	50 ug/m³	DM 60/02
со	Massimo giornaliero della media mobile di 8 h	10 mg/m ³	DM 60/02
O ₃	Soglia di informazione Media 1 h	180 ug/m³	D.lgs. 183/04
O ₃	Soglia di allarme Media 1 h	240 ug/m³	D.lgs. 183/04

^{*} misurato per 3 ore consecutive in un sito rappresentativo della qualità dell'aria in un'area di almeno 100 Km², oppure in un'intera zona o agglomerato nel caso siano meno estesi.n tabella 2 vengono invece riportati, per conoscenza, i limiti di esposizione cronica riferiti ad un monitoraggio continuo su base annua o almeno stagionale da effettuarsi con stazioni fisse. Tali valori limite non sono pertanto confrontabili con i dati raccolti nel breve periodo dell'indagine.

In tabella 2 vengono invece riportati, i limiti di esposizione cronica su base annua.

Tabella 2: quadro complessivo dei valori limite per l'esposizione cronica

INQUINANTE	TIPOLOGIA	CONCENTRAZIONE	RIFERIMENTO	NOTE
NO ₂	98° percentile delle concentrazioni medie di 1h rilevate durante l'anno civile	200 ug/m³	DPCM 28/03/83 e s.m.	In vigore fino al 31/12/09
NO ₂	Valore limite annuale per la protezione della salute umana Anno civile	1 gennaio 2008: 44 ug/m ³ 1 gennaio 2009: 42 ug/m ³ 1 gennaio 2010: 40 ug/m ³	DM 60/02	
O ₃	Valore bersaglio per la protezione della salute da non superare per più di 25 giorni all'anno come media su 3 anni (altrimenti su 1 anno) Media su 8 h massima giornaliera	120 ug/m ³	D.lgs. 183/04	In vigore dal 2010. Prima verifica nel 2013
O ₃	Obiettivo a lungo termine per la protezione della salute Media su 8 h massima giornaliera	120 ug/m ³	D.lgs. 183/04	
PM10	Valore limite annuale Anno civile	40 ug/m³	DM 60/02	
Pb	Valore limite annuale per la protezione della salute umana Anno civile	0.5 ug/m³	DM 60/02	
C₅H₅	Valore limite annuale per la protezione della salute umana Anno civile	1 gennaio 2008: 7 ug/m ³ 1 gennaio 2009: 6 ug/m ³ 1 gennaio 2010: 5 ug/m ³	DM 60/02	
B(a)P	Valore obiettivo Media mobile annuale	1 ng/m³	D.lgs. 152/07	

In tabella 34 vengono riportati, i limiti per i metalli pesanti e per il Benzo(a)pirene introdotti dal DLgs. 152/07.

INQUINANTE	TIPOLOGIA	CONCENTRAZIONE	RIFERIMENTO
Ni	Valore limite	20 ng/m³	D.lgs. 152/07
NI	Anno civile	20 119/111	D.igs. 192/07
Hg	Valore limite	Non definito	
g	Anno civile	Non definito	
As	Valore limite	e 6 ng/m³	D.lgs. 152/07
As	Anno civile	o ng/m	D.igs. 102/07
Cd	Valore limite	5 ng/m³	D.lgs. 152/07
- Gu	Anno civile	5 Hg/III	D.igs. 102/07
ВаР	Valore limite	1 ng/m³	D.lgs. 152/07
Dar	Anno civile	i ng/ili	D.igs. 132/0/

6 - Risultati analitici dell'attività di monitoraggio, confronto con i limiti di legge

Nelle tabelle che seguono vengono esposti i raffronti tra i limiti di legge e i valori misurati nel periodo d'indagine dei diversi inquinanti per quanto riguarda le soglie di esposizione acuta e cronica, secondo quanto stabilito dai decreti N° 60 del 2002 e N° 183 del 2004 e dal D.Lgs. 3 agosto 2007 N 152. Per quanto riguarda l'esposizione cronica il dato viene fornito a puro titolo indicativo poiché i limiti sono riferiti a un intero anno di monitoraggio.

	CON	COMUNE DI TRICHIANA IFRONTO CON I LIMITI DI		
Esposizione	acuta:			
Inquinante	Tipologia	Valore	Riferimento legislativo	Risultati
SO_2	Soglia di allarme*	500 μg/m³	DM 60/02	0 superamenti
SO ₂	Limite orario da non superare più di 24 volte per anno civile	350 μg/m³	DM 60/02	0 superamenti
SO ₂	Limite di 24 h da non superare più di 3 volte per anno civile	125 μg/m³	DM 60/02	0 superamenti
NO_2	Soglia di allarme*	400 μg/m³	DM 60/02	0 superamenti
NO_2	Limite orario da non superare più di 18 volte per anno civile	1 gen 2008: 220 μg/m ³ 1 gen 2009: 210 μg/m ³ 1 gen 2010: 200 μg/m ³	DM 60/02	0 superamenti
PM10	Limite di 24 h da non superare più di 35 volte per anno civile	50 μg/m³	DM 60/02	18 superamenti
СО	Massimo giornaliero della media mobile di 8 h	10 mg/m ³	DM 60/02	0 superamenti
O ₃	Soglia di informazione Media 1 h	180 μg/m³	D.Lgs. 183/04	13 superamenti
O_3	Soglia di allarme	240 μg/m³	D.Lgs.	0 superamenti
O 3	Media 1 h	- 10 µg/····	183/04	o caporamona

^{*} misurato per 3 ore consecutive in un sito rappresentativo della qualità dell'aria in un'area di almeno 100 Km², oppure in un'intera zona o agglomerato nel caso siano meno estesi.

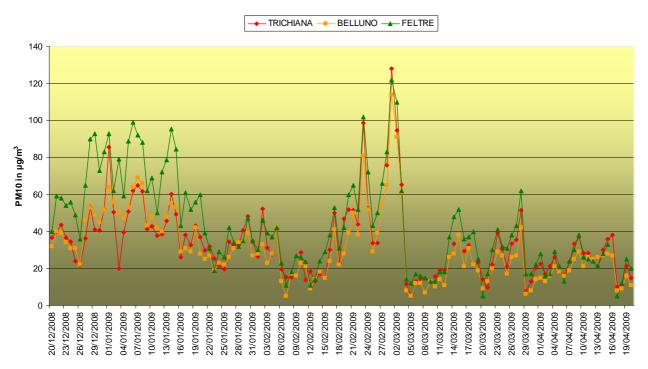
	CON	COMUNE DI TRICHI FRONTO CON I LIMIT			
Esposizione	e cronica:				
Inquinante	Tipologia	Valore	Riferimento legislativo	Note	Risultati
NO ₂	98° percentile delle concentrazioni medie di 1h rilevate durante l'anno civile	200 μg/m³	DPCM 28/03/83	In vigore fino al 31/12/2 009	54 μg/m³
NO ₂	Valore limite annuale per la protezione della salute umana	1 gen 2008: 44 μg/m³ 1 gen 2009: 42 μg/m³ 1 gen 2010: 40 μg/m³	DM 60/02		valore medio 26 µg/m³
O ₃	Valore bersaglio per la protezione della salute da non superare per più di 25 giorni all'anno come media su 3 anni Media su 8 h	120 μg/m ³	D.Lgs. 183/04	In vigore dal 2010 . Prima verifica nel 2013	21 superamenti
O ₃	massima giornaliera Obiettivo a lungo termine per la protezione della salute umana Media su 8 h massima giornaliera	120 μg/m³	D.Lgs. 183/04		21 superamenti
PM10	Valore limite annuale. Anno civile	40 μg/m³	DM 60/02		valore medio 34 µg/m³
C ₆ H ₆	Valore limite annuale per la protezione della salute umana Anno civile	1 gen.2008: 7 μg/m ³ 1 gen.2009: 6 μg/m ³ 1 gen.2010: 5 μg/m ³	DM 60/02		valore medio 3 μg/m³

Anidride solforosa: le concentrazioni rilevate si sono mantenute abbondantemente al di sotto dei limiti di legge. Il dato massimo orario rilevato è stato di 35 μ g/m³, da confrontarsi col limite di 350 μ g/m³.

Biossido di azoto: le concentrazioni misurate si sono mantenute al di sotto dei limiti di legge. Il dato massimo orario rilevato nel periodo di monitoraggio è stato di 77 μ g/m³, da confrontarsi di un limite orario di 210 μ g/m³ da non superare più di 18 volte all'anno. Il dato medio del periodo è stato di 26 μ g/m³, inferiore al limite annuale per la protezione della salute umana fissato per il 2009 in 42 μ g/m³.

Monossido di carbonio: le concentrazioni rilevate si sono mantenute al di sotto dei limiti di legge. La media mobile di otto ore massima rilevata nel periodo di campionamento è stata di 1.6 mg/m³, a fronte di un limite massimo giornaliero di 10 mg/m³.

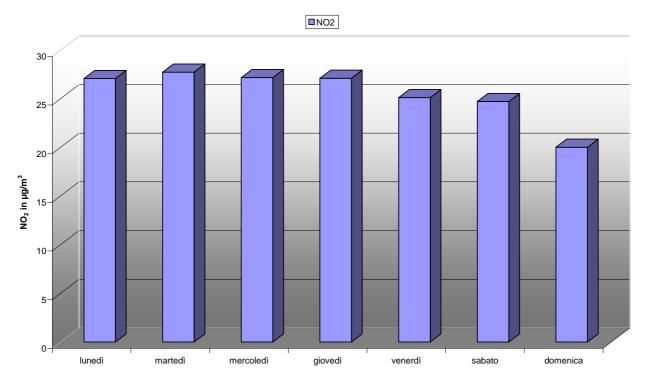
Ozono: Si sono registrati alcuni episodi del superamento del limite di informazione alla popolazione di 180 μ g/m³. Nel dettaglio, tali superamenti sono avvenuti nell'arco di una settimana per complessive 13 ore. Il dato massimo orario rilevato è stato di 196 μ g/m³. Non è mai stata comunque superata la soglia di allarme di 240 μ g/m³.


Polveri PM10: sono stati rilevate 18 giornate di superamento del limite giornaliero di esposizione di 50 μ g/m³ (sono consentiti dal DM 60/02 35 superamenti giornalieri nell'anno solare). Il dato massimo è stato rilevato il 1 marzo 2009, con 128 μ g/m³. Il valore medio del periodo è stato di 34 μ g/m³, al di sotto del limite annuale di 40 μ g/m³.

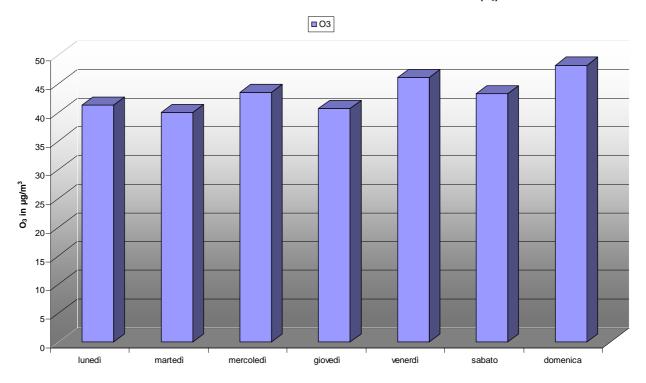
Benzene: Il valore medio dei dati giornalieri di benzene, di 3 μ g/m³, si è mantenuto al di sotto del limite annuale fissato fino al 31/12/2009 in 6 μ g/m³ e al limite definitivo fissato al 31/12/2010 in 5 μ g/m³.

7 - Rappresentazione grafica dei dati

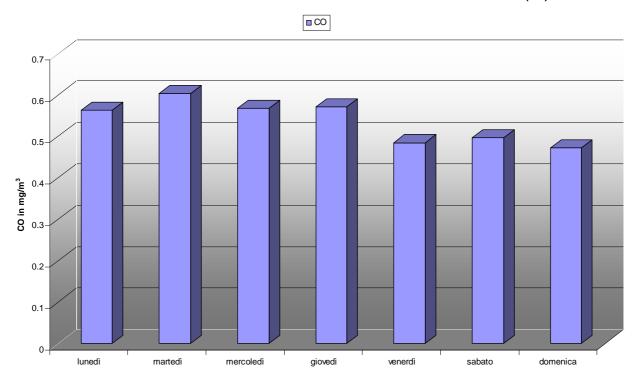
In questo paragrafo vengono presentate alcune valutazioni sull'andamento giornaliero dei principali parametri monitorati, cercando di metterne in evidenza la relazione con i fattori climatici e con le fonti di emissione.


COMUNE DI TRICHIANA: CONFRONTO ANDAMENTO DELLE POLVERI PM10 DAL 20 DICEMBRE 2008 AL 20 APRILE 2009 CON LE STAZIONI DI BELLUNO E FELTRE

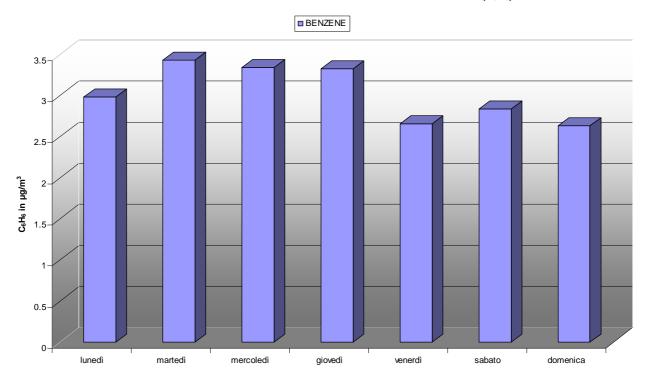
Il grafico dell'andamento delle polveri PM10 rilevate nel periodo di monitoraggio a Trichiana Belluno e Feltre evidenzia un analogo andamento se pur con concentrazioni leggermente differenti, denotando che la valbelluna ha per questo inquinante un comportamento omogeneo influenzato da comuni dinamiche di valle.


Si è anche analizzata la base di dati in modo da ottenere una settimana tipo per verificare in quali giorni si sono verificatei le maggiori concentrazioni di inquinanti.

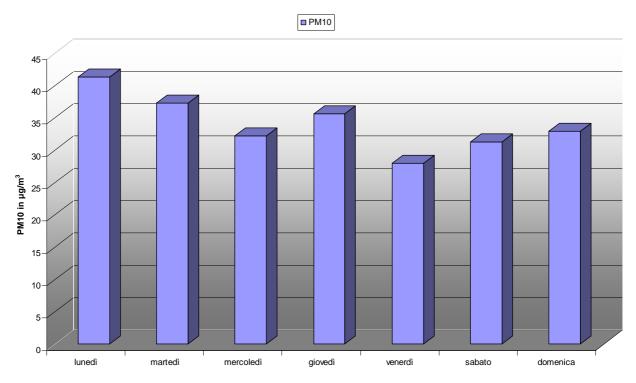
COMUNE DI TRICHIANA: SETTIMANA TIPO PARAMETRO BIOSSIDO DI AZOTO (NO2)


L'andamento settimanale del biossido d'azoto evidenzia un leggero calo nel fine settimana probabilmente dovuto alla fisiologica riduzione dell'attività lavorativa e degli spostamenti connessi.

COMUNE DI TRICHIANA: SETTIMANA TIPO PARAMETRO OZONO (O₃)

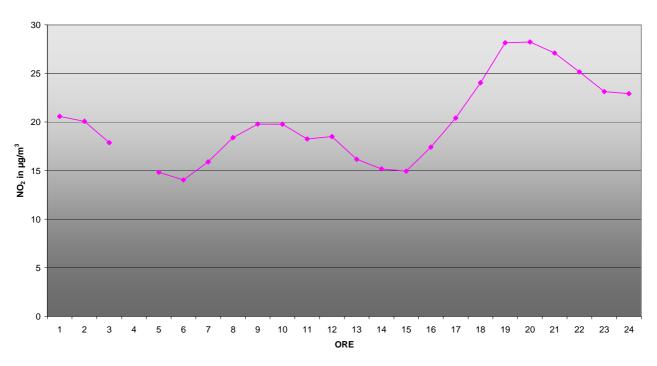

Per quanto riguarda l'andamento settimanale dell'ozono si evidenzia una bassa variabilità nel corso della settimana. Trattandosi di un inquinante secondario, in parte già presente in natura, non è possibile fare ipotesi di causa-effetto che lo colleghino a particolari fonti.

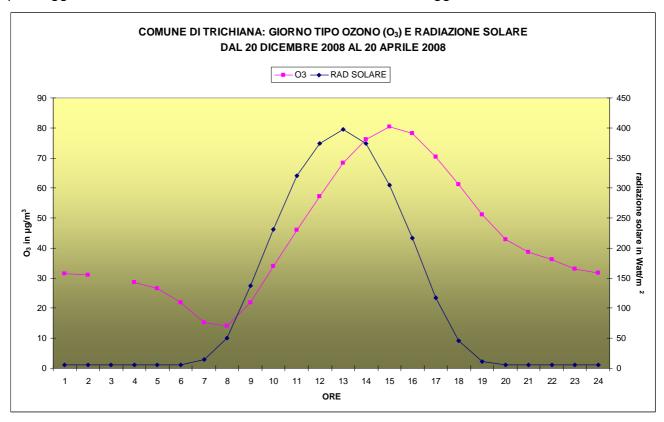
COMUNE DI TRICHIANA: SETTIMANA TIPO PARAMETRO MONOSSIDO DI CARBONIO (CO)


Il monossido di carbonio mostra una diminuzione della concentrazione nel fine settimana per gli stessi motivi illustrati nel caso del biossido d'azoto.

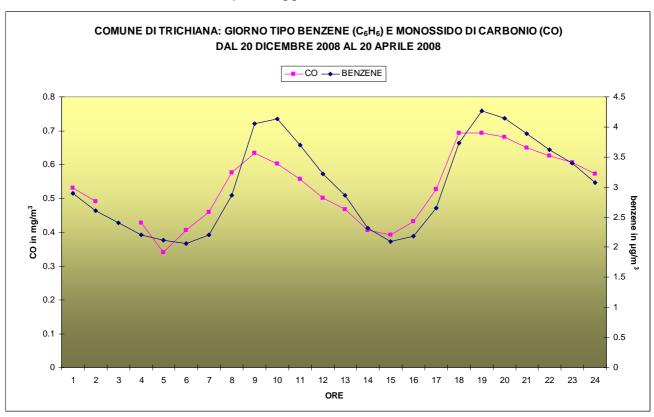
COMUNE DI TRICHIANA: SETTIMANA TIPO PARAMETRO BENZENE (C6H6)

Il benzene, inquinante primario, evidenzia concentrazioni basse con una modesta variabilità nel corso della settimana.


COMUNE DI TRICHIANA: SETTIMANA TIPO PARAMETRO PM10


L'andamento delle polveri PM10 nel corso della settimana evidenzia che le maggiori concentrazioni si sono riscontrate nella prima parte della settimana. Nel fine settimana si sono riscontrate concentrazioni comunque molto vicine a quelle degli altri giorni infrasettimanali.

Nei seguenti diagrammi viene rappresentato il giorno tipo per verificare l'andamento giornaliero degli inquinanti monitorati in continuo ed evidenziare così le fasce orarie di maggiore concentrazione nell'arco della giornata.


COMUNE DI TRICHIANA: GIORNO TIPO BIOSSIDO D'AZOTO (NO₂)
DAL 20 DICEMBRE 2008 AL 20 APRILE 2009

L'andamento del biossido d'azoto dimostra la possibile relazione tra questo inquinante ed il traffico, con due punte giornaliere al mattino ed alla sera, in corrispondenza dei massimi passaggi di veicoli nelle vicinanze della stazione di monitoraggio.

L'ozono ha un andamento associato a quello della radiazione solare. Infatti il picco della radiazione solare (tracciato nero) precede di qualche ora quello dell'ozono che presenta le massime concentrazioni a metà pomeriggio.

Il monossido di carbonio ha un andamento del tutto simile a quello del benzene, lasciando ipotizzare una probabile fonte comune di questi inquinanti.

Nel caso del PM10 poiché la normativa prevede valutazioni nel corso di un anno per il confronto con i termini di riferimento, data la limitatezza del periodo di monitoraggio, si è ritenuto opportuno utilizzare un programma messo a punto dall'Osservatorio Regionale Aria di ARPAV attualmente alla valutazione dell'Istituto Superiore di Sanità, già adottato da altri Dipartimenti ARPAV del Veneto, che consente di effettuare una stima sul probabile superamento dei limiti di legge.

Tale metodologia si articola nei seguenti passaggi:

- per un sito di misura sporadico (campagna di monitoraggio) è stata scelta una stazione fissa più rappresentativa (la stazione più vicina oppure una caratterizzata dalla stessa tipologia di emissioni e, statisticamente, dallo stesso tipo di meteorologia);
- 2. è stato calcolato un fattore di correzione per passare dal periodo all'anno sulla base dei parametri della distribuzione dei dati misurati nella stazione fissa;
- 3. è stato applicato il fattore di correzione per estrapolare il parametro statistico annuale incognito nel sito sporadico;
- 4. sono stati confrontati il parametro statistico annuale estrapolato ed il valore limite di legge.

I parametri statistici di interesse sono la media ed il 90° percentile. Quest'ultimo viene utilizzato perché, in una distribuzione di 365 valori, il 90° percentile corrisponde al 36° valore massimo. Poiché per il PM10 sono consentiti 35 superamenti del valore limite di 50

 μ g/m³ su 24 ore, in una serie annuale di 365 valori giornalieri il rispetto del limite di legge è garantito se il 36° valore in ordine di grandezza è minore di 50 μ g/m³.

Stazione fissa di Belluno dati annuali 2008/09; stazione mobile di Trichiana loc. Cavassico	STAZIONE FISSA	SITO SPORADICO
inferiore dati dal 20 dic 2008 al 20 apr 2009	Belluno	Trichiana
data	PM10-G	PM10-G
uata	(ug/m3)	(ug/m3)
giorni ril.	366	116
n. sup. VL 50 ug/m3	19	19
media	22	34

RIS	ULTATO
Valori Ar	nnuali Estrapolati Trichiana
00° poro	45
90° perc	'1 ਹ
media	24

La tabella sopra riportata, relativa alla campagna eseguita in a Trichiana, evidenzia un valore del 90° percentile di 45 che indica una stima di superamenti del limite di legge inferiore ai 35 consentiti.

8 - Scheda sintetica di valutazione

La scheda ha l'obiettivo di presentare in forma sintetica una valutazione riassuntiva dello stato di qualità dell'aria nel sito Trichiana durante il periodo di monitoraggio.

Nella scheda sono riportati gli indicatori selezionati, il riferimento normativo (ove applicabile) ed il relativo giudizio sintetico.

Nella legenda seguente sono rappresentati i simboli utilizzati per esprimere in forma sintetica le valutazioni sopra ricordate.

Simbolo	Giudizio sintetico
<u></u>	Positivo
	Intermedio
8	Negativo
?	Informazioni incomplete o non sufficienti

Parametro	Riferimento normativo	Giudizio sintetico	• •
Polveri fini (PM10)	DM 60/02	<u></u>	Alcuni superamenti del valore limite giornaliero.
Ozono (O ₃)	D.lgs. 183/04	<u> </u>	Alcuni superamenti della soglia di informazione alla popolazione. Nessun superamento della soglia di allarme.
Anidride solforosa (SO ₂)	DM 60/02	<u>©</u>	Concentrazione ampiamente inferiore ai limite previsto dalla normativa.
Biossido di azoto (NO ₂)	DM 60/02	<u></u>	Concentrazione ampiamente inferiore ai limite previsto dalla normativa.
Monossido di carbonio (CO)	DM 60/02	<u></u>	Concentrazione ampiamente inferiore ai limite previsto dalla normativa.
Benzene (C ₆ H ₆)	DM 60/02	<u></u>	Concentrazione media ampiamente inferiore al limite previsto dalla normativa.

Conclusioni

La situazione rilevata durante il periodo di monitoraggio si inserisce in un quadro generalizzato su tutto il territorio bellunese monitorato, con valori di concentrazione dei principali inquinanti che si sono mantenuti su livelli modesti. Tale omogeneità è probabilmente conseguenza delle favorevoli condizioni meteorologiche incontrate nel corso della campagna.

Si sono comunque riscontrati alcuni superamenti giornalieri dei riferimenti del PM10 e della soglia di informazione dell'ozono.

L'Ufficio Reti

- P.I. Simionato Massimo -
- Dott. Tormen Riccardo -

Visto
II Responsabile del Servizio
- Dott. Rodolfo Bassan –

ALLEGATI: tabelle riepilogative di tutti i parametri delle medie giornaliere e dei massimi valori orari rilevati. I dati utilizzati sono tratti dai valori misurati dagli analizzatori automatici e dalle refertazioni estrapolate da SIRAV in data 24 aprile 2009 come da disposizioni interne.

Param.		COMUNE O ₂		DITRICH		<u>I GIORNAI</u> O		ASSIMI ORA O2		DO 20 DICE D3		08 - 20 API		zene	PM10
Unità di misura				I				μg/m³ 293K		T .	mg/m³ 293K	mg/m³ 293K		μg/m³ 293K	μg/m³
data	media	Max orario	media	Max orario	media	Max orario	media	Мах огагіо	media	Max orario	media	Мах огагіо	media	Мах огагіо	media
20/12/2008 21/12/2008	8	14 8	73 60	155 146	28 20	75 78	31 29	47 49	6 5	28 22	0.5 0.6	0.9	4.3 4.2	7 6	36 40
22/12/2008 23/12/2008	8 7	35 16	85 69	253 148	37 27	136 77	28 27	46 42	7	21 26	0.7 0.7	1.2	5.2 4.7	15 9	44 37
24/12/2008 25/12/2008	5 3	9	58 23	107 40	19 5	42 9	28 16	43 27	8 20	27 47	0.7 0.5	1.1 0.9	4.3 3.1	7 5	34 24
26/12/2008 27/12/2008	4 5	9 10	33 52	107 95	7 12	44 37	23 33	42 55	29 19	55 50	0.5 0.7	0.9 1.1	3.0 4.5	6 8	22 36
28/12/2008 29/12/2008	7 2	15 14	50 57	86 145	10 16	26 70	34 33	50 53	14 21	36 54	0.9	1.5 1.4	5.5 5.1	10 10	53 41
30/12/2008 31/12/2008	6 8	16 19	61 69	137 125	17 20	58 50	35 39	61 57	22 17	56 46	0.8	1.5 1.5	4.7 5.3	10	41 52
01/01/2009 02/01/2009	3	15 8	70 62	133 117	18 16	52 41	43 37	54 62	12 14	46 38	1.0 0.9	1.5	6.3 5.4	9	86 50
03/01/2009 04/01/2009	5 5	10 10	68 35	100 72	19 5	38 14	38 27	51 50	14 23	44 47	1.0 0.7	1.4	5.9 4.1	8 7	20 40
05/01/2009 06/01/2009	7	17 15	71 53	140 100	19 9	47 24	43 38	69 64	18 19	51 49	0.9 0.9	1.4	5.7	11	51 62
07/01/2009 08/01/2009	5 7	13 13	80 81	164 160	24 27	65 73	43 40	64 55	9 7	31 30	1.1	2.4 1.5	7.0 6.5	16 12	65 62
09/01/2009 10/01/2009	3 5	7 20	54 56	137 124	14 14	48 54	34 34	64 50	23 30	56 73	0.7	1.6	4.6 4.2	12 11	41 43
11/01/2009 12/01/2009	7	9 15	40 83	80 281	6 29	26 164	30 40	47 66	35 26	76 63	0.6 0.7	0.9 1.4	3.8 4.4	7 10	38 38
13/01/2009 14/01/2009	7 9	15 16	86 122	166 272	26 46	69 133	46 52	77 75	20 5	47 28	0.8 1.2	1.5 2.2	5.2 7.3	11	46 60
1 <i>5/</i> 01/2009 1 <i>6/</i> 01/2009	7 5	16 14	108 54	251 121	47 20	138 58	36 24	53 37	11	11 44	1.1 0.6	1.1	6.9 3.6	15 7	49 26
17/01/2009 18/01/2009	7 4	13 9	69 37	124 72	28 9	61 21	27 23	40 41	3 9	13 31	0.8 0.6	1.1	4.6 3.5	7 6	38
19/01/2009 20/01/2009	5 9	15 19	70 104	139 214	27 44	57 110	30 37	52 47	5 1	24 10	0.9 1.2	1.4 2.0	5.5 7.4	10	43 37
21/01/2009 22/01/2009	5 6	9	81 80	141 210	30 34	63 113	36 28	52 40	3	23 17	0.9	1.4	5.6 5.7	10	30 32
23/01/2009	2	7 5	60 38	116 67	20 9	59 24	30 23	44 35	8 20	32 67	0.7	0.8	4.3 3.3	7	25 21
25/01/2009 26/01/2009	5	12	23 48	43 117	6 15	14 57	14 25	21 40	35 22	90 74	0.4	1.0	2.2 3.4	7	20 34
27/01/2009 28/01/2009	4	9	47 49	108	12 16	31 49	28 24	49 33	15 8	48 26	0.6	1.0	3.7 3.6	7 9	32
29/01/2009 30/01/2009 31/01/2009	4	10 11	63 56	156 178	25 19	83 94	25 27	50 43	17 18	72 71	0.7 0.6	1.2			41 48
31/01/2009 01/02/2009 02/02/2009	3	5 4	43 22	71 29	10 3	23 6	27 17	37 22	12 39	34 53	0.5	0.8			35 26
03/02/2009	9 3 5	17 14 10	90 83 52	133 189 87	35 33 16	58 95 33	37 33 27	45 48 42	5 8 11	24 36 43	1.0 0.9 0.7	1.7	5.0	8	52 31 28
04/02/2009 05/02/2009 06/02/2009	3	9	53 55	116 94	17	59 44	27 27 36	49 52	16	59 18	0.6	1.1 1.0 0.8	4.5 3.8	8 6	42 20
07/02/2009	2 2	4	27 24	51 40	3	10	22 18	43 31	50 38	88 67	0.3	0.6 0.6	2.7 3.0	5	15 15
09/02/2009	4	7	34 53	68 101	8 17	27 47	22	37 45	26 10	70 24	0.4	0.7	3.3 4.4	4 8	29
11/02/2009	2	8	29 34	73 129	9	34 54	15 19	26 47	44	94 101	0.4	0.7	3.2	5	14
3/02/2009	4 3	10	24	72 88	5	22	16	38	65	98	0.3	0.5	2.6	5	13
14/02/2009 15/02/2009 16/02/2009	4	10	25 20 33	39 59	3	38 11 18	16 16 24	31 27 40	55 55 50	106 101	0.3 0.3 0.4	0.4 0.6 0.7			15
17/02/2009	6 3	14	55 27	191 56	14	92 13	33 20	52 42	39 70	91 110	0.6	0.9	4.4 3.3	7 6	50 23
19/02/2009	6 4	13	41 51	93 125	9	29 53	28	60 49	47 44	102	0.5	0.8 0.7	3.8 2.9	10	47 52
21/02/2009 22/02/2009	5	13	52 27	119	12	52 11	32 33 21	53	35 59	96 121	0.6	0.9	3.4 2.4	6 3	51 44
23/02/2009	8	21 17	77 38	183 116	24 10	87 53	40	68 40	22 55	46 103	0.9	1.5	5.0	12 8	98
25/02/2009 26/02/2009	3	11	34 57	99 136	9 24	43 173	21 32	36 54	49 31	98 85	0.4	0.7	2.0	4 6	34 34
27/02/2009 28/02/2009	5	18 12	52 40	147	14	68	31 28	50 41	47 65	113 142	0.6	0.9	2.9	7 6	76
01/03/2009	6 3	13	42 41	93 121	7	21 59	31 23	61	29 41	66 110	0.9	1.5	4.7	10	128 95
03/03/2009	4	7	51 38	185	16	97 27	26 27	52	18	51 74	0.7	1.1	2.9	5	65 12
05/03/2009 06/03/2009	3	5 10	38 35	68 87	6 7	12	29 25	51 50	43 47	64 102	0.5	0.6	1.9 2.0	3 6	5
07/03/2009 08/03/2009	2	4 5	22 16	70 29	6 2	29	13	25 24	56 74	117 118	0.4	0.5	1.6 1.3	3	14
09/03/2009 10/03/2009	4 3	10 7	34 30	115 96	9	42 81	19 21	37 49	65 74	127 114	0.3	0.7	1.4	5	16
11/03/2009	3	7 9	28 33	117	8	47 33	17	44	75 68	129 115	0.4	0.7	1.2	3 4	19 19
13/03/2009	3	6	34 31	91 117	7	33 50	23 21	40	62 74	116 141	0.4	0.6	1.4	3	33
15/03/2009	3	5	19	28 113	2 7	6 44	16 20	27 46	82 77	150 136	0.5	0.7	1.7	3 2	29
7/03/2009 18/03/2009	4	8	36 36	112 101	7	43 38	25 25	65 54	65 63	126 133	0.5	0.8	1.7	4 4	33
19/03/2009 20/03/2009	3 2	6	29 20	95 70	6	31 25	21 15	48 45	80 86	122 120	0.4	0.6 0.5			23 14
21/03/2009	2 2	9	21 18	80	3	24 5	17 16	46 27	84 88	135 144	0.3	0.7	1.5 1.6	3	10
23/03/2009 24/03/2009	4 2	7	43 31	179 98	10 7	74 34	28 21	66 46	77 77	141 140	0.4	0.6	1.6 1.6	3	39 31
25/03/2009 26/03/2009	4 3	10 7	35 31	94 103	6 5	29 35	26 23	50 49	71 81	111 133	0.3	0.5 0.5			21 33
27/03/2009 28/03/2009	3 4	6 7	28 42	77 71	5	22 13	21 33	43 56	90 41	141 75	0.3 0.5	0.5 0.7	1.1 2.1	2 4	35 51
29/03/2009 30/03/2009	2	3 4	18 37	27 93	7	4 26	15 26	23 55	79 48	96 90	0.3	0.4	1.0	3	8 13
31/03/2009 01/04/2009	2	6	33 31	119 115	9 7	56 43	19 20	33 49	44 50	86 107	0.3	0.6	1.4	4 2	20 23
02/04/2009 03/04/2009	3 2	14 5	34 31	67 102	7	18 44	24 17	42 34	44 59	70 139	0.3 0.3	0.5 0.5	1.5 1.4	7 3	17 21
04/04/2009 05/04/2009	2	5 4	26 18	70 49	6	25 15	17 12	34 26	50 61	104 126	0.3	0.6 0.5	1.2 1.2	3	26 18
06/04/2009 07/04/2009	3 2	5 4	26 23	81 72	5	28 23	17	38 37	83 98	162 176	0.2	0.4	0.9	2 2	17
08/04/2009 09/04/2009	3 2	5	27 22	74 53	4 3	22 16	21 18	40 31	99 102	184 170	0.3	0.4	0.9	3 2	34 37
10/04/2009 11/04/2009	3 2	11 3	26 15	106 34	5 1	41 6	18 13	43 25	99 111	169 177	0.3 0.2	0.5 0.3	0.8 0.7	4	28 28
12/04/2009	2 2	2	12	27 23	1 1	3	10	26 16	114 113	184 176	0.2	0.3	0.7	1 1	24
14/04/2009 15/04/2009	2	5	20 30	45 81	2	8 24	17	33 47	109 113	184 196	0.3	0.4	0.8	2	30 36
16/04/2009 17/04/2009	3 2	6	38 25	98	6	26 27	29 19	59 49	63 74	95 103	0.3	0.4	1.1	2	38 10
18/04/2009 19/04/2009	3 2	7 4	26 24	76 34	5	31	18	32 27	52 28	101	0.2	0.5	0.8	4 2	11 21
20/04/2009 MEDIA	2	3	33	63	6	17	24	40	37	57	0.3	0.4	1.0	2	15
PERIODO	4		44		12		26		43		1		3	6	34
DATO MAX.															

PROV	3	COMUNE	NE.		STA2	Z. RIL	EVAI	STAZ. RILEVAMENTO	0.		P/	PARAMET	ETR0			5	UNITA' DI MIS.	IM IC	· 6		METODO	000		PEI	PERIODO		TEMP	TEMPO MED.		PERI	PERIODO OSS.	088.
BL	<u> </u>	Trichiana	ına		Σ	EZZ0	MEZZO MOBILE	븰		BIO	SSID	100	BIOSSIDO DI AZOTO (NO ₂)	O (NC)2)		µg/m³	e _n		chem	il mi	chemiluminescenza	ınza	dice	dicembre-08	80		ORA			MESE	
															음	EMB	DICEMBRE 2008	88														
gg/ore	1	2	က	4	5	9	~		6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	98	31 (G-MEDIO
1																					24	77	14	23	19	15	2	78	42	17	17	22
2																				15	92	23	16	22	18	15	29	56	32	18	17	21
9																				19	25	20	16	16	21	12	20	56	22	14	20	19
4																																
5																				22	22	16	12	11	19	17	19	. 92	17	15	17	18
9																				32	22	18	14	21	17	15	22	16	17	56	25	20
7																				52	23	92	22	22	19	12	28	52	99	38	33	26
8						\vdash	\vdash							П						34	32	46	24	36	18	11	34	34	30	98	88	30
6																				53	33	88	98	26	15	17	34	34	41	44	41	32
10																				38	27	35	32	26	12	18	36	31	44	45	43	32
11																				40	27		83	34	17	20	37	32	48	48	48	35
12																				34	59	98	34	37	17	21	43	34	36	88	50	34
13																				53	59	93	98	90	14	20	88	25	28	98	49	30
14																				78	ਲ	27	53	27	1	15	8	23	22	23	40	26
15																				34	8	24	53	40	12	22	26	23	23	36	33	27
16														П						40	49	98	42	43	23	31	34	27	88	33	42	37
17																				47	9	43	40	42	24	42	46	37	49	6	55	44
18																				42	32	88	37	33	27	42	55	50	43	28	57	43
19																				4	23	32	ल	32	27	32	47	47	53	46	54	39
20																				98	32	23	34	25	16	88	43	49	43	46	47	36
21																				40	32	20	24	59	8	32	35	49	25	45	41	32
22																				53	32	20	24	59	7	88	53	48	78	8	88	29
23																				83	8	8	98	72	~	72	32	49	72	23	4	27
24																				23	72	55	17	20	6	73	8	46	15	22	45	25
MEDIA																				32	29	28	27	28	16	23	33	34	33	35	39	
ZIW																				15	22	16	12	=	7	1	19	16	15	14	17	
MAX																				47	49	94	42	43	27	42	55	20	53	61	27	

.s.			G-MEDIO	8	27	25		25	27	30	88	34	85	85	33	29	27	26	32	45	48	43	37	35	32	32	30			
PERIODO OSS.	MESE				_					"	_		- CI			_	-				10			(0)	_	_		_		
ERIO	2		31	8	37	35		31	30	8	8	8	33	8	31	24	22	18	16	20	25	28	29	8	23	19	20	27	16	
			30	23	23	18		16	20	24	27	怒	Ж		27	38	8	18	24	32	43	88	53	27	25	8	34	27	16	+
ТЕМРО МЕD.	⋖		29	24	25	23		12	18	18	8	72	23	\vdash	27	22	15	16	13	3	20	44	29	27	24	38	27	25	12	
MPO	0RA		7 28	2	12	6		15	15	22	2	24	27	\vdash	23	78	78	8	53	32	8	33	29	72	24	2	20	24	6	
) 27	8	22	20		21	53	32	8	8	8	\vdash	27	24	22	22	22	58	49	88	27	뚕	8	6	22	28	19	
OQC	io-09		26	23	0	6		16	21	23	8	8	22	\vdash	19	22	16	16	53	8	4	38	78	R	37	37	8		6	
PERIODO	gennaio 09		1 25	15	2	18		10	10	ъ	17	15	15	13	15	13	14	7	11	6	11	12	14	4	2	17	15	14	7	
			24	35	8	3		29	30	27	23	23	27	17	12	10	10	10	13	26	8	34	26	9	2	22	16	23	10	
0	chemiluminescenza		23	25	27	24		25	26	38	24	27	27	13	16	17	32	78	8	35	44	42	42	ಜ	Ж	8	8	8	16	
METODO	mine		22	2	2	23		23	21	23	27	37	8		26	23	25	23	27	88	40	38	33	ল	8	23	25	28	21	
¥	milu		1 21	43	8	35		36	35	8	44	43	4	\$		35	8	98	88	52	43	31	34	8	8	23	19	98	19	
	ਝ		3 20	32	8	34		32	3	ਲ 	8	88	g		34	37	37	37	88	38	44	37	33	4	8	32	45	37	ਲ 	
MIS.			3 19	28	28	23		19	20	2	2	25	27	H	3 26	78	78	3 25	32	. 20	52	42	35	8	8	8	32		18	
UNITA' DI MIS	µg/m³	5003	7 18	20	16	15		3 18	3 15	17	22	20	2	\vdash	3 18	20	14	3 18	5 21) 27	35	2 41	98	ر ا	8	24	23		14	
UNIT	_	GENNAIO 2009	16 17	9 14	2 15	5 22		2 23	7 23	3 25	25	3	35 29	\vdash	4 33	1 32	32	38	2 35	33 40	7 33	0 22	8 21	9 4	용	<u>4</u>	18 22		2 14	
		GEN GEN	15 1	28 19	29 12	22 16		18 22	17 27	23 23	35 32	88	۳ 8	\vdash	45 24	43 21	1	43 13	49 12	53 3	52 37	45 30	38 26	33 28	33	39 14	29 1	36 24	17 12	
	(NO ₂)		14 1	50 2	49 2	51 2		50 1	49 1	50 2	33	33	51	_	86 4	47 4	56 41	39 4	54 4	74 5	75 5	67 4	51 3	42	44	۳ 8	34 2		34	
TRO	Z0T0		13 1	25 5	19 4	18 5		26 5	35 4	52 5	55	52 5	48	52 6	9 99	46 4	45 5	45 3	42 5	74 7	77 7	9 /9	51 5	42	8	44	42 3	45 5	18 3	
PARAMETRO	DI A:		12 1	27 2	19	17 1		18 2	29	88	54	9	48	\vdash	37	44 4	8	7 67	39	64 7	99	53	47 5	84	8	3	90 %	40 4	17 1	
PAI	BIOSSIDO DI AZOTO (NO ₂)		11	32	82	, 22		15 '	18	18	23	38	٠ 8	\vdash	38	78	8	24	34	45	47	39	34 '	34	8	38	23		15	
	BIOS		10	19	23	78		15	32	4	88	42	47	47	39	35	83	21	34	20	20	45	40	88	8	82	25		15	
0.			6	37	<u>ه</u>	36		17	17	23	35	42	စ္တ	\vdash	29	30	26	22	98	25	64	47	43	뚕	8	82	19	8	17	+
MENT	鰑			23	<u>ه</u>	30		35	32	32	g	8	g	\vdash	49	45	32	34	43	55	51	54	47	8	5	44	40	8	83	
LEVA	MO		7	49	43	98		36	35	34	42	45	46	47	48	33	34	35	49	83	64	52	47	37	æ	14	40	43	8	i
STAZ. RILEVAMENTO	MEZZO MOBILE		9	83	g	24		23	23	32	ਨ	22	83	뚕	43	98	27	36	8	25	47	64	59	22	47	25	55	æ	ន	Ī
STA			5	32	88	22		25	34	4	88	g	8	53	52	32	8	88	47	89	8	99	61	ফ	æ	8	g	£	22	
			4	52	22	27		36	18	17	14	14	15	16	17	19	8	23	g	44	99	43	98	£	g	83	æ	27	14	
COMUNE	iana		9	æ	42	43		42	43	43	41	41	g	9	32	25	38	32	34	51	51	44	40	44	83	88	53	æ	52	
COM	Trichiana		2	40	83	21		20	56	30	8	હ	27	23	32	35	88	33	23	54	62	22	47	8	42	98	98	37	20	
			-	20	48	47		20	49	48	49	45	42	g	41	32	27	23	37	52	54	35	40	æ	42	48	46	43	23	
PROV	BL		gg/ore	-	2	3	4	5	9	7		6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	MEDIA	Z	

COMUNE ST			S	- 52	.AZ	STAZ. RILEVAMENTO	VAM	OLIN			PARAME	_	.R0			UNITA' DI MIS.	DI MI	<u>s</u>		MET	METODO		H.	PERIODO		TEMF	темро мер.		PER	PERIODO OSS.	oss.
Trichiana MEZZO MOBILE BIOSSIDO DI	MEZZO MOBILE	MEZZO MOBILE						BIOS	SOL	400	0 O D	ΑZ	OTO (NO ₂)	NO ₂)		рц	µg/m³		chen	chemiluminescenza	inesc	enza	febl	febbraio-09	60		ORA			MESE	
														□	EBBR	FEBBRAIO 2009	600														
1 2 3 4 5 6 7 8 9 10 11	3 4 5 6 7 8 9 10	4 5 6 7 8 9 10	5 6 7 8 9 10	01 8 9 10	7 8 9 10	8 9 10	9 10	10			12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 2	29 (30	31	G-MEDIO
18 26 37 16 30 12 19 25 14 17 17	37 16 30 12 19 25 14 17	16 30 12 19 25 14 17	30 12 19 25 14 17	12 19 25 14 17	19 25 14 17	25 14 17	14 17	17	\vdash	┌──	9	9	24	16	25	20	41	18	35	34	26	28	20	19	19	26	20				22
13 26 41 12 24 20 17 21 8 15 16	41 12 24 20 17 21 8 15	12 24 20 17 21 8 15	24 20 17 21 8 15	20 17 21 8 15	17 21 8 15	21 8 15	8 15	15	-	\vdash	r~	9	16	23	14	24	6	16	27	37	8	22	15	12	19	18	71				19
10 29 38 19 25 21 15 17 9 15 22 (38 19 25 21 15 17 9 15 22	19 25 21 15 17 9 15 22	25 21 15 17 9 15 22	21 15 17 9 15 22	15 17 9 15 22	17 9 15 22	9 15 22	15 22	22	\dashv	ဖ	^	4	1	12	9	7	12	8	Ж	83	22	9	=	4	72	52				18
10 25 36 17 20 20 10 15 17 12 17 11	36 17 20 20 10 15 17 12 17	17 20 20 10 15 17 12 17	20 20 10 15 17 12 17	20 10 15 17 12 17	10 15 17 12 17	15 17 12 17	17 12 17	12 17	17	\dashv		σ	£	Ξ	12	16	7	16	23	23	17	9	16	7	13	17	9				16
12 28 38 23 21 22 14 17 22 14 20 24	38 23 21 22 14 17 22 14 20	23 21 22 14 17 22 14 20	21 22 14 17 22 14 20	22 14 17 22 14 20	14 17 22 14 20	17 22 14 20	22 14 20	14 20	8	\dashv		12	12	5	9	Ж	6	9	g	怒	17	72	8	9	53	83	8				21
15 34 36 26 26 27 29 17 17 23 22 37	36 26 26 27 29 17 17 23 22	26 26 27 29 17 17 23 22	26 27 29 17 17 23 22	27 29 17 17 23 22	29 17 17 23 22	17 17 23 22	17 23 22	23 22	22	-		8	52	14	23	34	18	24	41	88	21	ಜ	34	22	8	8	88				27
15 36 37 28 28 28 30 19 20 22 22 43	37 28 28 30 19 20 22 22	28 28 28 30 19 20 22 22	28 28 30 19 20 22 22	28 30 19 20 22 22	30 19 20 22 22	19 20 22 22	20 22 22	22 22	22			37	છ	17	છ	38	35	41	43	40	20	40	34	34	37	41	33				32
18 40 44 28 25 40 23 19 21 25 21 46	44 28 25 40 23 19 21 25 21	28 25 40 23 19 21 25 21	25 40 23 19 21 25 21	40 23 19 21 25 21	23 19 21 25 21	19 21 25 21	21 25 21	25 21	21	46		34	24	15	32	50	35	37	40	34	21	20	38	33	44	43	32				33
22 39 43 26 24 40 21 17 22 29 26 47	43 26 24 40 21 17 22 29 26	26 24 40 21 17 22 29 26	24 40 21 17 22 29 26	40 21 17 22 29 26	21 17 22 29 26	17 22 29 26	22 29 26	29 26	26			88	16	23	99	44	25	28	43	33	25	46	40	36	50	47	41				33
21 39 40 25 25 41 16 12 28 35 21 32	40 25 25 41 16 12 28 35 21	25 25 41 16 12 28 35 21	25 41 16 12 28 35 21	41 16 12 28 35 21	16 12 28 35 21	12 28 35 21	28 35 21	35 21	21	32		7	19	14	16	37	18	20	29	41	19	99	8	24	43	98	27				28
21 32 37 21 25 38 10 13 27 25 26 20	37 21 25 38 10 13 27 25 26	21 25 38 10 13 27 25 26	25 38 10 13 27 25 26	38 10 13 27 25 26	10 13 27 25 26	13 27 25 26	27 25 26	25 26	26			10	12	11	16	23	12	21	27	29	15	59	29	15	41	30	19				24
30 20 25 43 13 17 14 28 10	30 20 25 43 13 17 14 28 10	20 25 43 13 17 14 28 10	25 43 13 17 14 28 10	43 13 17 14 28 10	13 17 14 28 10	17 14 28 10	14 28 10	28 10	5	\dashv		9	9	0	9	88	o	19	19	22	16	43	8	9	54	8	9				22
18 39 26 15 22 41 19 15 14 24 5 13	26 15 22 41 19 15 14 24 5	15 22 41 19 15 14 24 5	22 41 19 15 14 24 5	41 19 15 14 24 5	19 15 14 24 5	15 14 24 5	14 24 5	24 5	25	7			9	9	9	17	7	9	16	23	9	æ	13	6	22	72	15	\dashv		П	9
17 42 24 20 21 36 13 16 28 6 13	24 20 21 36 13 16 28 6	20 21 36 13 16 28 6	21 36 13 16 28 6	36 13 16 28 6	13 16 28 6	16 28 6	28 E	9	9	7		S	9	ო	9	22	9	15	92	9	5	44	9	12	9	72	9				13
18 44 26 23 25 42 14 13 17 30 7 9	26 23 25 42 14 13 17 30 7	23 25 42 14 13 17 30 7	25 42 14 13 17 30 7	42 14 13 17 30 7	14 13 17 30 7	13 17 30 7	17 30 7	30 7	_	0		^	0	4	15	52	Ξ	8	23	9	12	9	9	4		8	9				13
18 41 33 26 30 44 15 15 22 39 7 15	33 26 30 44 15 15 22 39 7	26 30 44 15 15 22 39 7	30 44 15 15 22 39 7	44 15 15 22 39 7	15 15 22 39 7	15 22 39 7	22 39 7	39	7	55		0	~	무	23	8	14	92	32	8	15	8	72	7	g	74	ន				24
17 43 48 42 49 47 26 21 28 39 13 21	48 42 49 47 26 21 28 39 13	42 49 47 26 21 28 39 13	49 47 26 21 28 39 13	47 26 21 28 39 13	26 21 28 39 13	21 28 39 13	28 39 13	39 13	13	\dashv		15		5	8	42	24	g	46	S	9	88	24	92	g	37	ਲ				32
18 42 36 42 39 52 31 31 33 45 9 23	36 42 39 52 31 31 33 45 9	42 39 52 31 31 33 45 9	39 52 31 31 33 45 9	52 31 31 33 45 9	31 33 45 9	31 33 45 9	33 45 9	45 9	o	ន		22	9	74	-	22	42	8	49	37	74	25	R	8	g	ន	e e	\dashv		T	98
21 41 34 40 34 47 39 25 32 43 17 24	34 40 34 47 39 25 32 43 17	40 34 47 39 25 32 43 17	34 47 39 25 32 43 17	47 39 25 32 43 17	39 25 32 43 17	25 32 43 17	32 43 17	43 17	17	\dashv		22	9	8	Ж	40	g	44	43	47	8	25	9	8	æ	43	e e				34
19 45 29 42 30 42 43 17 37 32 10 16	29 42 30 42 43 17 37 32 10	42 30 42 43 17 37 32 10	30 42 43 17 37 32 10	42 43 17 37 32 10	43 17 37 32 10	17 37 32 10	37 32 10	32 10	10	-		4	24	98	Ж	æ	27	g	8	æ	73	æ	13	77	98	40	જ્				30
18 43 20 42 30 42 32 18 21 25 11 5	20 42 30 42 32 18 21 25 11	42 30 42 32 18 21 25 11	30 42 32 18 21 25 11	42 32 18 21 25 11	32 18 21 25 11	18 21 25 11	21 25 11	25 11	11			20	12	27	24	37	21	40	37	34	24	32	22	28	34	28	35				27
20 42 16 40 21 41 31 17 29 27 11 3	16 40 21 41 31 17 29 27 11	40 21 41 31 17 29 27 11	21 41 31 17 29 27 11	41 31 17 29 27 11	31 17 29 27 11	17 29 27 11	29 27 11	27 11	11	-		22	77	24	27	40	24	42	æ	g	27	32	22	73	78	55	37				27
18	18 30 18 36 29 14 26 18 8	30 18 36 29 14 26 18 8	18 36 29 14 26 18 8	36 29 14 26 18 8	29 14 26 18 8	14 26 18 8	26 18 8	18 8	8	2		17	77	7	23	49	22	37	58	સ	59	53	20	24	32	52	28				25
33 27 27 36 22 18 22 27 15	33 27 27 36 22 18 22 27 15	27 27 36 22 18 22 27 15	27 36 22 18 22 27 15	36 22 18 22 27 15	22 18 22 27 15	18 22 27 15	22 27 15	27 15	15	Н	위	9	16	16	24	8	70	28	32	83	73	40	23	73	32	8	88				
10 25 16 12 18 12 10 12 8 12 5 ;	16 12 18 12 10 12 8 12 5	12 18 12 10 12 8 12 5	18 12 10 12 8 12 5	12 10 12 8 12 5	10 12 8 12 5	12 8 12 5	8 12 5	12 5	2	``	7	2	^	ო	12	16	7	12	16	16	12	18	13	6	13	17	15				
22 45 48 42 49 52 43 31 37 45 26 47	48 42 49 52 43 31 37 45 26	42 49 52 43 31 37 45 26	49 52 43 31 37 45 26	52 43 31 37 45 26	43 31 37 45 26	31 37 45 26	37 45 26	45 26	56			38	34	27	9	52	42	09	49	53	30	89	9	36	54	20	44				

	8	COMUNE	ш	S	AZ. I	RILEV	STAZ. RILEVAMENTO	2		_	PARAMET	METRO	0		N	UNITA' DI MIS.	SIW I		_	METODO	00		PERIODO	0QC	<u> </u>	MP0	TEMPO MED.		PERIODO OSS.	oss.
Trichiana	_=	ia.			MEZ	ZO M	MEZZO MOBILE		Ē	BIOSSIDO DI AZC	I 00	AZ01	OTO (NO ₂)) ₂)		µg/m³			hemi	mi	chemiluminescenza	E Z	marzo-09	60-0		ORA	l ₄		MESE	
														X	MARZO 2009	2009														
2		က	4	9	9	_	ω	6	10	11	12	13	14	15	16	17	18	19 2	20 2	21 2	22 23	3 24	1 25	5 26	27	. 28	29	99	34	G-MEDIO
7	8	14	10	19	9	13	8	13	9	19	13	17	22	18	17	12	20	11	5	31 2	22 16	3 22	12	21	20	25	17	18	10	17
-	5	16	14	16	14	17	11	11	6	18	11	16	18	20	13	12	, 11	12	4	19 2	25 19	19	<u>о</u>	21	15	28	13	17	7	16
23	ص ا	15	12	5	4	4	5	~	ω	15	7	15	4	17	9		14	=	4	15 1	18 13	20	ω	6	15	24	15	12	ω	13
\vdash	7	13	15	12	9	9	~	19		12	12	15	14	13	14	9	12 ,	12	8	10 1	16 38	16	19	19	13	17	σ	73	14	14
\vdash	83	10	16	15	15	15		19	16	24	15	18	12	10	18	17	, 11	17 1	14 1	10 1	16 23	24	19	19	19	19	10	22	16	17
8	ន	8	8	8	27	72	12	5	33	37	Ж	g	8	4	æ	83	~ %	84	ਲ ਲ	28	4	<u>ب</u>	Ж	ਨ	ਲ	82	12	88	ಜ	28
\vdash	R	37	ළ	£	4	22	5	Я	₽	44	6	\$	8	8	48	8	42	84	25	43	14 88	48	8	\$	8	37	2	જ	8	38
	R	8	88	5	4	20	12	37	Ж	44	44	g	52	17	35	£4	44	88	15	21 2	21 54	43	42	8	54	g	9	54	92	34
Ж	Ж	8	8	9	32	20	6	83	8	29	29	ઝ	23	13	58	38	98	24 1	13 2	20 1	16 31	8	3 27	21	8	42	1	48	23	28
æ	22	19	26	98	22	15	7	26	23	17	18	22	19	12	17	14	30	11	12 1	11 1	10 33	23	14	20	25	41	13	40	19	22
뚕	23	17	8	42	23	16	7			13	11	19	12	15	13	16	, 11	16		8	8 23	8	_	12	13	28	21	21	11	18
29	23	15		33	19	11	4	30	12	11	6	17	11	13	6	12	12 '	10 1	10	4	7 20	36		9	13	32	17	20	12	17
24	19	21	32	98	16	9	2	12	10	10	12	16	12	8	7	11	11	17	7	3	8 16	10		9	12	40	12	16	15	14
23	13	28	3	83	14	7	10	8	12	7	16	17	11	6	7	15	14	16	9	3	8 17	12	_	9	11	99	14	14	16	15
23	0	19	41	34	15	9	11	8	15	5	13	14	15	11		19	, 11	18		٠ د	7 17		16	<u>о</u>	12	52	10	12	17	15
33	16	35	42	26	16	10	10	2	20	4	14	17	14	12	13	78	, 91	18 1	15	3 1	10 22	7	19	19	13	33	11	14	20	18
46	77	45	43	52	83	11	14	8	52	8	21	36	20	14	23	14	8	22	17	1	12 25		78	28	23	45	15	17	52	23
	22	52	29	49	20	00	23	23	22	8	32	36	27	27	25	98	54	24 1	16 1	14 1	19 29	7 6	34	38	21	20	21	47	22	31
	41	42	27	41	೫	ω	22	38	22	7	20	34	37	24	98	46	44	39 4	45 2	20 2	27 47	6	8	34	20	32	23	34	34	33
	æ	8	21	71	4	S	33	8	52	15	37	24	36	52	56	34	8	78	22 4	46 2	23 30	15	32	78	16	19	17	15	22	26
g	೫	83	17	15	ਨ	15	75	5	R	13	27	72	72	6	23	82	19	16	12	38	28	17	37	82	22	72	8	8	74	23
24	9	18	21	19	7	19	19	11	23	6	98	24	27	22	18	36	, 22	10	13 2	21 2	20 22	17	ر ج	38	25	21	21	18	21	21
23	16	36	19	52	15	19	19	5	8	10	ઝ	23	23	18	12	20	19	5	26 1	16 2	23 20	17	٠ ا	32	23	22	23	13	14	20
	23	26	27	53	25	13	13	19	21	17	24	23	71	16	70	52	25	20 1	15 1	17 1	16 28	21	27	23	21	33	15	26	19	
	თ	10	10	12	14	5	4	2	9	4	7	14	11	00	7	8	11	2	4	3	7 13	7	ω	9	11	17	6	12	9	
	4	52	43	51	20	25	24	37	49	4	20	40	9	27	46	99	54	48 4	45 4	46 2	27 66	94	20	49	43	99	23	22	33	

PERIODO OSS.	١		G-MEDIO	13	11	6		12	22	34	8	27	18	- 15	16	12	13	13	14	- 17	20	22	24	23	20	17	14			
S S S	MESE		동																											
PEF			8																											
			29																											
TEMPO MED.	0RA		78																											
TEM			27																											
0	6		26																											
PERIODO	aprile-09		25																											
핕	e		24																											
	enza		23																											
000	nesc		22																											
METODO	chemiluminescenza		21																											
	chem		70	8	12	10		15	19	8	뚕	92	72	용	8	8	28	ਨ	Ж	40	ਨ	27	23	ន	19	13		25	10	8
·s			19	16	13	11		12	13	11	12	17	17	24	24	16	16	20	16	18	17	92	27	24	23	22	19	18	1	27
D M	_∞	6	18	13	13	12		12	20	58	23	16	16	12	=		11	12	17	14	16	27	32	83	20	23	16	18	8	32
UNITA' DI MIS.	µg/m³	E 200	17	7	10	7		12	25	49	27	16	15	14	12	12	15	4	13	24	ਨ	24	g	8	17	15	13	19	7	8
5		APRILE 2009	16	14	11	6		14	31	89	S	4	ಜ	53	8	25	44	52	32	59	32	40	98	28	22	16	15	58	6	59
	02)	٨	15	10	6	8		12	47	45	43	43	77	15	17	15	6	Ξ	7	17	32	29	ઝ	24	30	20	15	22	8	47
0	N 0		14	11	8	7		10	19	36	8	g	17	13	Ξ	o	6	ω	Ξ	16	23	18	17	8	23	14	11	17	7	33
METRO	BIOSSIDO DI AZOTO (NO ₂)		13	12	9	8		6	6	12	16	14	ω	ω	ω	9	6	2	2	7	6	6	13	13	15	12	6	10	5	16
PARAMET	00		12	20	13	7		10	2	6	00	10	7	7	9	9	5	е	4	5	5	8	16	38	17	17	16	10	3	26
_	ISS		Ξ	12	12	10		11	25	16	17	16	12	12	12	ω	9	~	ω	თ	11	12	13	9	71	20	15	13	9	25
	Ŭ		10	11	11	8		12	26	27	43	35	19	16	17	13	10	1	7	17	14	15	18	21	20	17	19	18	8	43
2			0	15	13	6		12	20		8	ਨ	17	17	9	15	12	12	4	19	20	77	27	5	19	20	14	18	6	돐
AME	MEZZO MOBILE		ω	6	7	7		6	26	40	8	8	22	20	9	12	11	12	4	22	25	27	34	24	23	8	20	21	7	8
ILEV,	0.70 M(_	ω	7	ω		11	28	37	27	27	2	8	9		ω		12	16	20	22	19	9	77	13	ω	18	9	37
STAZ. RILEVAMENTO	MEZ		و	თ	9	7		15	28	88	Ж	92	2	9	12		0	9	4	20	13	ਨ	23	ន	12	7		17	9	38
ST			9	17	12	11		13	11	15	17	38	17	o	ω	ω	7	o	ω	9	16	38	10	4	7	10	15	12	4	56
			귝	15	13	11		8	23	34	25	2	15	14	2	7	11	12	5	13	16	24	24	뚕	16	19	15	17	7	34
COMUNE	Trichiana		m	16	14	00		17	20	34	8	83	R	17	5		6	0	0	00	16	8	20	17	22	13	13	17	ω	34
SO	Tric		2	2	10	00		11	11	37	42	æ	8	27	37	17	52	8	27	8	38	22	82	37	22	36	16	24	S	42
			-	13	12	13		18	હ	47	8	9	8	8	5	=	12	5	=	7	15	74	77	13	77	9		20	ω	8
PROV	BE		gg/ore	-	2	က	4	9	9	7	ω	တ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	MEDIA	Z	MAX

PROV		COMUNE	<u>ш</u>	S	TAZ.	RILE	STAZ. RILEVAMENTO	ENTO		PAR	PARAMETRO	TRO			N N	UNITA' DI MIS.	MIS.		Ξ	METODO	0	_	PERIODO	00	里	TEMPO MED.	MED.		PERIODO OSS.	. oss.
BL	Ь	Trichiana	29		M	0ZZ	MEZZO MOBILE	끸)Z0	0Z0N0 (03)	(03)			_	µg/m³		ğ	sorbi	ment	assorbimento U.V.		dicembre-08	re-08		ORA	_		MESE	36
														DICE	DICEMBRE 2008	2008														
gg/ore	-	2 3		4 5	9		8	9	10 11		12 1	13 1	14 1	15 1	16 17	7 18	3 19	9 20) 21	22	23	24	25	26	27	28	29	30	31	G-MEDIO
1																			0	2	4	ღ	4	88	20	15	2	27	24	13
2																			0	0	3	2	4	34	10	14	2	25	24	10
3																														
4																		2	0	2	2	3	0	22	21	14	16	25	21	- 11
5																		0	0	_	ო	6	0	36	14	10	14	23	19	10
9																		0	0	0	1	2	1	78	11	18	12	16	13	6
7																		0	0	0	-	0	0	8	9	6	ო	7	е	5
8																		0	0	2	0	1	0	32	1	က	ღ	9	2	4
6																		_	-	2	2	-	ო	52	7	9	2	4	2	5
10																		ε	က	3	5	9	8	25	10	11	6	6	11	6
11				\square														ㅋ	7	n	ω	9	9	92	17	16	14	17	16	13
12				\square						\square		\square						14	15	7	13	16	8	34	8	8	Ж	8	24	22
13				\dashv														77	2	-	9	92	æ	44	8	Ж	45	47	8	સ
14																		78	19	9	28	27	46	55	45	8	5	25	88	37
15																		22	22	21	23	13	47	54	20	98	54	99	46	37
16																		17	15	10	13	18	હ	8	8	32	æ	43	35	27
17																		2	귝	n	3	ო	15	27	27	8	22	12	12	13
18																		2	4	2	ო	ო	σ	17	12	9	22	12	9	6
19																		_	4	1	4	2	10	25	11	S	13	15	8	6
20																		_	-	n	ო	9	22	16	Ξ	ㅋ	9	4	Έ	10
21																		2	-	е	5	4	34	9	16	4	27	1	13	12
22																		_	-	5	S	ო	42	7	19	ო	22	19	9	12
23										-		-				-		-	-	<u>س</u>	2	ω	45	8	15	4	22	ន	2	13
24																		_	-	1	7	4	43	20	17	က	8	19	7	13
MEDIA																		9	5	4	7	8	20	23	19	14	21	22	17	
ZIW																		0	0	0	0	0	0	1	-	က	2	4	2	
MAX																		28	1 22	21	26	27	47	55	20	36	54	99	94	

PROV	3	COMUNE	¥	-	STAZ.	RILE	STAZ. RILEVAMENTO	ENTC			PAR	PARAMET	TR0			UNIT/	UNITA' DI MIS.	IIS.		ME	METODO		<u> </u>	PERIOD0	0(TEM	TEMPO MED.	ED.	PE	PERIODO OSS.	oss.
BL	=	Trichiana	na		ME	0ZZ	MEZZO MOBILE	<u> </u>)Z0	OZONO (03)	03)			=	µg/m³		ass	assorbimento U.V.	ento	U.V.	ge	gennaio 09	60-		0RA			MESE	ш
															GENN	GENNAIO 2009	600														
gg/ore	-	2	· ص	4 5	9 9		2 8	8	9	10 11	1 12	2 13		4 15	91 9	17	18	19	70	21	22	23	24	25	26	27	28	29	30	34	G-MEDIO
—	т г	2	4	17	16 19	_	6	8	2	26 24	25	28	9	-	0	4	7	-	0	0	0	0	0	4	1	9	귝	0	ø	-	7
2	2	9	8	18 17	7 14	\vdash	9	8	~	19 2	23	\vdash	9	0	14	e	2	0	0	S	0	0	0	-	20	ω	9	0	е	0	8
က		Н																													
4	1 1	19	1	6 22	2 20		4 3	3 1	16 2	26 2	25 33	33 22	2 4	0	9	0	-	0	0	0	0	-	0	9	23	3	9	0	7	0	
5	0 1	19	1 1	11 1	15 18		5 0		18 2	28 32	2 31		0 1	2	4	0	0	0	0	0	0	0	0	8	13	4	2	2	7	0	8
9	0 1	11	1 1	17 5	18		2 1	21		17 3	30 23	3 14	4 0	4	0	0	-	0	0	-	0	0	0	9	5	1	9	0	1	1	6
7	0	9	1 2	20 4	2 1		5 0		16	8 2	28 1:	13 4	0 †	1	-	0	0	0	0	0	0	0	1	8	þ	9	ļ	0	2	1	4
ω	-		1	24 5	10		2 0		10	7 2	23 2	2	0	0	0	0	-	-	0	0	0	0	0	-	1	е	4	0	0	2	9
တ	m	~	2	7 23	14	┝	2 2			8	23	\vdash	2	0	-	0	7	-	0	0	0	-	-	9	5	ω	ω	-	-	S	S
10	7	12	ω	31 12	2 17	\vdash	8	\vdash	15 1	14	19 15	5 11	4	0	4	-	o	m	0	-	0	귝	7	14	17	15	00	4	2	S	6
11	12 1	18 1	13 3	31 23	3 23		10 4		29 2	22 22	2 19	9 21	1 4	1	00	-	23	5	-	2	-	18	32	34	28	21	10	6	11	8	15
12	19 2	20 2	21 3	35 28			13 10		46 3		38 2	25 30	8 0	2	19	1 2	28	6	-		9	32	52	44	43	28	17	21	28	6	23
13	34	Н	Н	38 49		Н	28 1	18 4	48 5	55 61	Н	44 42	2 21	9	28	4	52	15	0	14	11	32	99	22	46	37	17	46	æ	18	32
14	39	38 4	44 4	44 51	1 49		31 2	28 4	49 B	65 67	7 56	6 41	1 17	8	35	4	ઝ	19	0	23	13	20	64	29	61	43	23	99	58	20	38
15	46 3	38 4	44 4	47 47	7 49		31 3	30 5	2 95	73 76	9	3 47	7 28	11	44	4	27	24	-	23	17	22	67	87	74	48	23	71	71	32	43
16	35	27	88	88	8 42	\vdash	20 2	20 4	43 5	54 60	0 52	2 47	7 15	4	44	3	20	19	-	15	12	22	92	8	59	45	36	72	54	34	36
17	14	13	16 2	25 13	3 20	-	8		15 3	8	0 20	0 16	1	2	19	-	4	9	0	ო	ო	12	4	87	42	Ж	1	8	4	ಜ	21
18	10	5 1	11 1	10 7	7 21		5 6		9 2	26 2	26 10	9 0	9 0	1	9	2	7	2	-	0	0	2	24	75	13	4	2	7	25	21	11
19	13	5	1	12 7	5		9	3	13 2	-	33 17	9 2	-	-	ო	7	2	7	0	0	-	ო	00	55	10	2	-	7	15	8	10
20	12	7	13	17 5	9		4	-	14 2	38	-	20 14	0	_	ო	13	-	-	-	0	0	귝	0	45	15	ო	ო	б	20	14	10
21	11	5	10 1	12 8	8		6 2		22 3	31 2	26 20	0 18	8 0	1	2	12	-	-	0	0	0	9	11	98	8	1	2	12	15	11	10
22	5	5 1	19 1	14 15	5 7	Н	5 3	Н	23 3	33 2	29 25	5 22	2 0	0	4	2	-	-	4	0	1	က	4	27	9	5	2	10	12	9	10
23	2		18	20 13	3		9	-	21 3	8	33 27	7 13	3 0	0	9	2	-	-	5	0	0	0	9	36	7	7	က	9	2	16	9
24	2	5	15 1	12 12	2 6	-	3 4	-	29 3	-	-	25 10	0 0	9	4	4	-	0	-	0	0	0	5	22	9	2	2	4	0	16	8
MEDIA	12 1	14 1	14 2	23 18	8 19	_	9 7	=	23 3	30	35 24	6 20	0 5	2	11	3	6	5	-	4	3		20	35	22	15	8	17	18		
ZIW	0	2	<u> </u>	6 4	5 1	=	2 0	=	4 E	9	19 2	2 2	2 0	0	0	0	0	0	0	0	0	0	0	-	1	1	Ţ	0	0		
MAX	46 3	38 4	4	47 51	1 49		31 30		26 7	73 7	76 63	3 47	7 28	=	4	13	3	24	9	23	17	32	19	90	74	48	97	72	71		

oss.			G-MEDIO	25	29		27	26	21	15	12	16	25	40	54	65	74	78	78	71	57	42	35	32	ઝ	27	26			
PERIODO OSS.	MESE		31 (
PERI			30																											
			29																											
0 ME	ORA		28 2	88	34		32	25	23	11	귝	16	32	49	75	98	116	127	142	134	121	s s	98	20	53	45	49	64	4	142
ТЕМРО МЕD.	0		27	17	24		19	18	2	2 '	-	4	8	6	. 64	8	103 1	112 1	113 1	109	90	8	43	34	46	41	ි ස	47 (1	113
	6		76	24	21		23	21	11	2	-	4		15	28	48	74 /	88	`	77	89	ន	88	27	24	26	14	ઝ	1	85
PERIODO	febbraio 09		25	સ સ	37		23	28	19	12	4	7	27	23	77	84	92	8	95	88	8	88	49	46	8	35	25	49	4	86
E	febb		24	92	27		20	19	17	4	2	7	Ф Ф	47	92	35	100	102	103	100	88	8	82	22	88	42	37	55	4	103
	>		23	32	23		98	28	22	12	4	m	9	6	23	88	45	gg	46	37		9	7	19	19	17	17	22	3	94
000	assorbimento U.V.		22	92	20		21	24	21	18	17	72	37	8	92	8	111	120	121	115	109	<u>ه</u>	2	8	99	39	33	89	17	121
METODO	rbime		21	20	12		14	14	7	4	0	4	£	36	55	74	83	98	98	76	52	£	25	8	37	59	23	35	0	96
	asso		70	17	52		53	21	15	5	2	13	23	8	7.5	94	104	100	100	82	99	Ж	ਨ	42	23	18	38	44	5	104
S.			19	8	32		16	34	99	26	12	72	સ	8	7.5	87	93	102	88	85	88	R	42	હ	24	17	14	47	12	102
UNITA' DI MIS.	µg/m³	600	18	17	110		8	68	98	82	48	48	64	82	91	102	106	100	26	93	81	54	32	33	41	30	34	02	21	110
NITA'	рц	AIO 20	17	23	21		25	23	16	11	5	4	17	37	29	72	06	88	91	83	99	32	32	25	23	21	10	88	4	91
n		FEBBRAIO 2009	16	24	35		35	35	28	25	13	32	22	77	75	79	87	88	101	8	64	8	43	32	8	29	99	20	19	<u>1</u>
		=	15	g	52		೫	35	ઝ	53	27	ন	42	ន	92	88	88	106	106	94	87	8	25	8	R	58	88	55	25	106
2	3)		14	27	34		8	35	32	18	14	22	S	88	73	82	98	88	98	100	8	67	25	45	88	44	37	55	14	100
METRO	(03)		13	20	72		67	8	52	35	78	8	8	8	88	92	97	88	97	98	88	ឌ	84	8	48	34	88	92	28	98
PARAM	OZONC		12	g	55		34	88	23	14	00	ω	15	46	70	8	88	88	92	87	76	22	47	8	92	101	101	88	8	101
			1	2	-		0	1	0	0	5	16	8	23	32	79	93	94	9	8	8	8	54	19	57	99	57	44	0	94
			10	9	14		17	13	1	4	4	4	0	2	23	20	24	24	19	14	4	-	0	-	2	1	9	6	0	24
NT0	س		6	7	13		17	18	14	13	15	15	17	16	27	57	70		64	57	45	8	2	6	14	8	13	28	8	70
STAZ. RILEVAMENTO	MEZZO MOBILE		00	29	88		37	35	32	29	24	32	83	88	82	83	63		29	57	43	2	18	15	1	6	10	88	6	19
RILE	V OZZ			4	45		55	1 62	52	9	34	22	8	75	88	20	88	77	72	71	48	23	24	14	88	22	27	88	14	88
STAZ.	ME		9	- 2	11		9	14		4	13	_	e.	13	17	9 6	5 13	9 16	1 12	2 9	5	4	ω	-	0) 1	2 10	8	0	18
			2	0	3		0	0	0	0 (0	0	9	· ·	17	9 28	43 45	43 59	43 54	38 52	9 24	4	14	7	1	10	12	1 16	0 (3 59
¥	na		3 4	0	0		0 0	0 0	0 0	0 0	0 0	0	2	7	16 18	26 29	36 4	33 4	32 4:		00	2	_	2	2 0	5 0	1 0	8 11	0 0	36 43
COMUNE	Trichiana		2 3	24			11 (12 (4 (2 (7		2	9 1	8 2	8 3	3	2 3	1 21	0	0	,	2	0	0	0	2) 0	24 3
٥	=		<u></u>	36	49		47 1	37 1	32	32	28	82	8	88	40	53	47 (47	47	44	46	44	40	40	- 88	34	98	40	28	
PROV	BL		gg/ore		2 4	3	4 4	5	9	7	8	9	10	11	12 4	13 6	14 4	15 4	16 4	17 4	18 4	19	20 4	21 4	22	23	24	MEDIA 4	MIN 2	
PR.			90													_	-			_	_	_	2	2	2	2	2	뿔	N	MAX

oss.			G-MEDIO	51	49		45	42	37	25	19	33	83	70	82	94	104	107	108	105	88	81	99	61	25	53	49			
PERIODO OSS.	MESE		31 (20	27		24	17	15	က	6	23	x	45	72	79	8	8	98	83	74	75	47	36	27	22	52	44	3	98
PE			8	23	25		99	54	æ	8	52	22	g	æ	62	29	23	22	88	8	92	35	24	30	71	18	18	48	18	90
ED.			29	74	20		81	87	84	84	85	87	8	88	92	80	87	8	96	93	85	71	69	74	88	61	48	62	48	96
TEMPO MED.	ORA		28	20	늄		38	34	23	38	19	18	8	78	89	63	42	92	26	32	34	27	55	22	67	62	59	41	18	75
TEM			27	1.2	02		85	15	40	35	31	14	53	96	122	131	139	141	139	137	124	125	120	124	96	23	85	06	31	141
0	99		26	50	46		40	34	42	3	16	38	75	87	113	128	130	133	133	123	114	98	96	26	98	86	69	81	16	133
PERIODO	marzo-09		25	22	92		64	20	49	ਲ	21	48	æ	102				110	111	108	100	89	80	8	25	47	40	71	21	£
표	Ε		24	48	48		38	39	26	20	17	26	47	62	69	90	140	132	133	135	131	128	118	90	85	76	69	22	17	140
	U.V.		23	62	55		51	38	40	24	7	25	72	78	107	119	132	136	141	134	121	105	67	29	60	63	60	22	7	141
METODO	ento		22	53	46		52	47	44	45	48	64	83	117	129	135	138	143	144	139	133	115	81	92	64	71	99	88	44	4
ME	assorbimento U.V.		21	42	52		99	22	51	32	28	99	88	103	115	122	127	131	132	134	135	122	102	82	23	69	69	84	28	135
	ass(20	91	98		73	71	49	28	38	99	8	97	110	110	116	120	120	118	110	107	62	82	88	84	59	98	28	120
<u>8</u>			19	09	8		44	48	44	7	15	37	22	g	101	108	117	122	118	120	113	104	22	80	35	97	102	80	11	122
≅ =	µg/m³	60	9	35	Ж		32	3	23	15	12	36	42	8	94	120	133	8	121	123	103	92	52	48	8	47	83	64	12	133
UNITA' DI MIS.	рd	MARZO 2009	17	28	47		47	47	8	8	2	25	ន	82	104	117	126	121	119	108	88	43	49	49	44	41	42	92	2	126
		MARZ	16	55	25		20	43	88	19	12	98	8	8	111	124	132	138	133	127	115	106	75	99	54	52	8	22	12	136
			15	83	જ		46	41	9	37	30	43	22	92	8	112	13	4	150	148	142	116	87	20	73	53	9	82	99	150
22	3)		14	38	8		39	33	35	19	11	39	20	8	100	111	127	141	140	141	134	118	72	29	61	49	53	74	11	4
	OZONO (03)		13	42	4		35	સ	27	15	11	23	\vdash	2	88	100	110	Ξ	116	113	101	76	62	61	99	45	4	62	11	116
PARAME	0Z0		12	61	6		53	52	5	R	14	3	ន	84	104	114	114	188	114	115	107	5 82	1 51	46	46	99	8		14	115
			11	44	42		41	88	72	14	7	17	ις	79	96	7 107	4 117	4 126	0 129	2 129	122	2 115	114	62	77	77	88	74	7	4 129
			10	87	27		8	9 9	93	83	23	48	-8	177		107	8 114	7 114	7 110	5 102	0 92	102	100	78	52	51	32		23	7 114
ENTO			6	3 43	46		34	9 25	3 24	7 22	9	2 12	4	3 54	9 92	6 82	6 118	2 127	4 127	8 125	3 120	2 93	5 65		92 (4 72	2 77	3 65	9	_
STAZ. RILEVAMENTO	MEZZO MOBILE		7 8	28 56	21 4		15 46	14 49	8 46	3 37	2 36	34 52	32	43 98	54 106	80 116	102 116	115 112	7 114	1 118	113	106 82	82 75	95 08	59 50	42 44	39 42	6 73	2 36	`
E.	0ZZ		2 9	37 2	35		37 1	33	82	83	16	23 3	44	58 4	67 5	85 8	92		96 117	97 111	79 112	23 10	22 8		15 5	20 4	26 3		15 2	102 117
STAZ	M		9	64	8		64 3	64	56 2	51 2	23 1	16 2	82	34 5	25 6	27 8	29	\vdash	38	55 9	55 7	22 2	26 2	50 1	64 1	52 2	38 2	43 4	16 1	64 1
			4	44 E	8		51 6	44 E	40 6	18	9	24	19	43	41 2	36 2	35		29	29 6	45 5	65 2	65 2		88	67 5	29	44 4	6 1	74 6
쒿	na		က	25 4	15		20 6	15 4	12 4	4	0	-	=	34	7 88	45	44		51	25	8	0	3	1 1	5	12 6	7	18 4	0	
COMUNE	Trichiana		2	10	12		12	10	4	m	0	0	2	88	40	28	88	108	110	86	96	87	41	27	36	38	83	41	0	19
0	🖹		_	45	88		38	35	8	8	24	16		15	73	44	8		99	25	37 (12 (9		13	10	10	78	9	
PROV	BL		gg/ore	1	2	3	4	- 2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	MEDIA	NIM	MAX

			G-MEDIO	90	55		47	42	33	23	31	50	71	85	102	116	121	128	128	126	120	108	88	73	- 67	61	64			
v	MESE		31																					Г						
			30																											
			29																											
TEMPO MED.	0RA		28																											
TEM			27																											
0	6		26																											
PERIODO	aprile-09		25																											
F	ab		24																											
	J.V.		23																											
METODO	assorbimento U.V.		22																											
MET	ig.		21																											
	asso		70	18	32		34	37	25	8	43	49	25	48	41	51	46	46	41	34	æ	41	34	20	6	00		38		57
S.			19	23	72		15	15	13	15	21	27	33	ઝ	25	34	43	46	42	88	g	41	33	29	24	18	14	28	13	46
UNITA' DI MIS.	µg/m³	6	18	44	æ		27	25	41	11	24	49	63	22	84	101	68	98	88	84	85	99	34	34	32	20	22	25	11	101
NITA'	рц	E 200	17	88	88		62	47	34	11	53	75	85	92	96	88	96	100	103	83	88	85	52	99	73	63	52	73	11	103
		APRILE 2009	16	35	æ		89	74	49	72	25	20	8	74			29	88	8	88	75	52	44	88	5	23	8	63	77	95
			15	88	88		70	8	33	92	38	28	97	122	138	165	186	192	196	187	164	160	147	123	8	35	8	113	56	196
2	3)		14	20	20		89	62	23	45	28	71	102	119	141	157	169	181	184	182	164	144	120	92	84	82	8	109	45	184
METRO	10 (03)		13	85	88		92	99	55	S	54	91	111	121	131	143	148	167	174	176	165	163	147	112	103	8	8	113	93	
PARAMI	OZONO		12	98	2		99	53	99	55	72	79	108	127	146	159	176	182	182	184	184	173	136	9	102	85	8	114	ಬ	184
			1	84	75		62	999	41	44	88	87	105	122	138	161	175	177	176	176	166	156	135	108	Б	78	20	111	4	171
			10	74	6		48	42	25	19	14	44	83	101	121	147	163	165	169	162	165	164	140	122	8	85	74	66	14	169
NT0	ш.		6	9	S		20	45	37		24	59	88	108	134	151	159	170	166	162	157	145	118	108	88	78	77	102	24	170
STAZ. RILEVAMENTO	MEZZO MOBILE		ω	75	77		62	53	8	52	32	65	92	106	125	3 148	3 169	184	3	156	152	3 146	7 110	88	74	52	88	8	25	184
RILE	ZO N		7	70	20		52	48	78	17	35	65	8	100	3 110	3 146	9 163	174	9 176	5 172	3 154	128	127	106	74	88	88		17	176
TAZ.	MEZ		9	28	20		41	32	23		23	46	71	8	103	123	149	162	149	145	146	109	82	99 8	0 82	98	71	83	в	9 162
			5	3 25	72		27	7 22	19	16	15	13	33	57	89 0	4 83	88	94	100	101	8	52	83	126	110	82	9 64	61	13	4 126
ш	ē		4	2 48	8		1 32	2 27	19	e	7	19	55	5 76	3 100	5 104	7 92		8	88	හ ස	5 68	7 33	0 20	7 27	1 24	1 19	9 51	e -:	9 104
COMUNE	Trichiana		e.) 22	20		9 21	2 12	2 9	3 2	2 3	9 7	1 16	3 45	88	88	7 97	3 110	121	139	133	3 125	7 97	2 70	7 47	1 51	7 51		2 2	139
\ddot{z}	Έ		1 2	19 70	23 52		18 59	1 42	4 32	13	1 12	16 27	1 54	4 43		78 61	3 57	2 58	94	77 44	12 54	3 58	0 47	48 32	36 47	36 31	7 27	0 44	3 12	07 70
>			re 1	Ť	72		Ŧ	34	14	e	4	=	34	44	99		88	92	100	107	102	88	20				57		_σ	X 107
PROV	В		gg/ore	-	2	က	4	S	ဖ	~	00	8	10	11	12	13	14	15	16	17	9	19	20	21	22	23	24	MEDIA	Z	MAX

PROV	2	COMUNE		lS	AZ. R	IILEV	STAZ. RILEVAMENTO	011		_	PARAMET	METE	22		n	UNITA' DI MIS.	M IO.	<u>S</u>		ME	METODO		Ы	PERIODO	00	TEM	TEMPO MED.	IED.	핆	PERIODO OSS.	oss.
BL	Ę	Trichiana	_		MEZ	W 02	MEZZO MOBILE	ļ		BE	BENZENE (C6H6)	E (C6	(9H;			Бď	µg/m³		gas	gascromatografia	atog	rafia	dic	dicembre-08	e-08		0RA			MESE	ш
														□	CEMI	DICEMBRE 2008	800														
gg/ore	1 2	က	4	5	9	~	ω	6	10	11	12	13	14	15	16	17	18	19	70	21	22	23	24	25	26	27	28	29	30	31	G-MEDIO
-																				4.6	3.3	3.8	3.1	3.4	1.6	3.2	4.4	10.3	2.8	3.3	4.0
2																			2.3	4.7	3.2	2.4	3.3	ო	1.6	3.1	4.1	7.6	3.1	2.4	3.4
က																			2.2	3.4	3.5	2.4	3.4	2.9	1.6	3.1	4.4	4.6	2.3	2.6	3.0
4																			2.2	3.3	2.2	2.4	2.5	3.5	1.6	2.3	3.1	3.1	1.8	2.8	2.6
- 9																			2.4	3.2	2.3	2.1	2.1	4.2	1.6	1.9	3.2	2.7	1.9	2.4	2.5
9																			2.3	3.1	2.3	2.2	1.7	3.2	1.6	2	2.7	2.4	2	2.3	2.3
7																			2.3	2.7	2.7	2.2	2	2.7	1.6	2.3	2.5	2.4	2	2.7	2.3
8																			2.9	3	4.3	2.8	2.6	3.2	1.8	2.9	2.7	2.5	2.7	4.3	3.0
6																			4.5	3.7	14.9	6.2	4.1	3.3	2.2	3.8	3.7	5	6.3	4.9	5.2
10																			5.5	4.7	11.1	8.3	5.2	3.5	2.8	5.5	4.3	6.3	8.1	9.4	6.2
11																			7.2	4.6	9.5	8.3	5.7	4.9	2.9	6.1	6.8	7.2	9.3	7.7	6.7
12																			6.1	巿	6.9	5.9	5.6	4.4	3.5	7.5	6.2	5.5	6.7	8.5	5.9
13																			88	3.6	9.9	4.7	3.9	3.1	3.4	8.9	5.1		2	7.4	4.9
14																			Þ	3.4	4.2	3.9	3.7	2.4	2.9	9	4		5.2	4.7	4.0
15																			3.1	3.3	2.6	2.8	4.2	2	2.8	3.6	4.6		3	3.9	3.3
16																			3.2	3.8	2.7	ო	5.3	2.8	2.9	4.2	3.8		3.6	3.3	3.5
17																			2	5.2	5.5	7.7	6.6	4.2	4.2	3.9	4.3	9.8	7.5	6.4	5.8
18																			6.2	5.6	7.9	7.3	7.3	3.4	3.8	7.8	6.4	7.1	9.9	9.7	6.9
19																			5.7	4.8	6.3	8.8	6.2	3.9	5.4	6.7	7.8	5.6	6.8	6	6.4
20																			6.7	4.6	5.8	5.1	5.7	4.1	4.5	6.9	8.9	6.3	5.7	6.5	5.9
21																			5.5	6.4	5.9	5.9	4.5	2.1	4.9	9	9.6	4.3	5.3	6.5	5.6
22																			6.9	5.4	3.6	5.4	5.4	1.8	5.8	2	10.3	3.8	4.8	5.6	5.3
23																			ф. ф.	5.9	33	4 .3	5.3	1.6	5.1	3.9	10.1	3.3	3.4	5.5	4.7
24																			6.3	4.1	4 L.	4.3	3.7	1.7	9	4.4	10.2	2.9	3.3	1.3	4.1
MEDIA																			4.4	4.2	5.2	4.7	4.3	3.1	3.0	4.5	5.6	5.1	4.7	5.1	
Z																			2.2	2.7	2.2	2.1	1.7	1.6	1.6	1.9	2.5	2.4	1.8	1.3	
MAX																			7.2	6.4	14.9	8.8	7.3	4.9	5.8	7.8	10.3	10.3	9.6	9.7	

PROV		COMUNE	JNE		STA	Z. RIL	STAZ. RILEVAMENTO	/ENT	0		PAI	PARAMET	TR0			UNIT	UNITA' DI MIS	MIS.		M	METODO			PERIODO	00	TEM	TEMPO MED.	ED.	H	RIOD	PERIODO OSS.
BL		Trichiana	ana		Σ	EZZ0	MEZZO MOBILE	븰			BENZ	ENE	BENZENE (C6H6)				µg/m³		ga	gascromatografia	natog	rafia	ge	gennaio 09	60-0		ORA			MESE	SE
															GEN	GENNAIO 2009	5003														
gg/ore	_	2	3	4	9	9			6	10 1	11	12 1	13 1	14 1	15 1	16 17	7 18	19	20	21	22	23	24	25	26	27	28	29	30	34	G-MEDIO
1	8.3	6.2	5.9	3.3 4	4.9	4.6	8.9	6.8	5.5	3.1 4	4.1	3.2 2.8	2.8 5.	55	5.9 3.5	5 2.2	2 2.8	5.5	6.2	4.8	4.9	6.3	4.9	3	2.2	4.2	3.6				4.8
2	8.5	4.6	6.4	3.2	4	4.4	5.9	5 4	4.2	3 4	4.3	2.8 2	2.4 5.	5.7 6.	6.6 2.2	2 2.1	3.1	9	5.7	5.3	5.1	6.1	4.3	3	2.1	3.4	2.6				4.4
3	7.4	3.3	9.9	3.3	3.1	3.2	6.7	5.1	4	3 2	2.8 2	2.1	1.8 4.	4.7 4.	4.9	2 3	2.7	5.8	9	3.4	4.9	5.8	4	3.2	1.4	3	1.9				3.9
4	9.9	2.9	8	3.2 2	2.2	9	5.3	4.3	3.2	2.4 2	2.7	1.8	1.8 4	4.1 3.	3.9 2.3	3 3.3	3 2.5	4.5	5.1	5.4	4.2	3.8	3.7	2.2	1.6	9	1.6				3.5
5	6.2	2.7	7.8	2.8	• •	2.4	5.9	4.8	3	2	2 1	1.6 1	1.8 4.	4.4 3.	3.3 2.5	5 3.9	3 2.7	3.7	4.6	7	4.7	3.6	3.6	1.9	1.3	2.9	1.9				3.5
9	5.9	2.9	7.1	2.4	, 1	2.5	5.2	4.2	2.6	2.2	1.8 1	1.7 1	1.8 4	4.9	2.5 2.8	8	2.4	3.7	4.4	5.1	4.7	3.2	3.4	1.9	2.1	2.9	1.8				3.3
7	5.6	3.5	7.1	2.2	, 1	2.8	4	4.1	2.5	2.6 1	1.8	2.3 1	1.9 5	5.1 2.	2.2 2.9	9 4.2	2 2.1	4.1	4.6	3.8	3.9	3.2	3.2	2.9	2.3	3.4	2.1				3.3
8	5.7	3.6	7	2	, 1	2.9	3.2	4.9	3.5	3.2 2	2.9	3.7	4 6	6.2 4.	4.8 3.6	6 4.5	5 2.6	4.1	5.4	4.8	2	3.7	3.3	2.2	ო	3.6	2.8				3.9
6	6.3	4.1	7	2.5		3.6	6.1	6.9	6.5	4.5	3 8	8.7	9 8	8.1 8.1		6 4.6	3 4.3	8	6.7	9.9	6.4	5.9	3.8	2.3	9	6.8	4.2				5.8
10	8.2	4.9	7.9	3.2	~/	5.1	8.8	6.9	6.7	6.7 3	3.7 9	9.8	10.8	9.2 6.	6.6 7.1	1 5.2	2 4.1	7.1	7.5	9.9	9.6	6.7	5.5	3.4	9	3.6	3.9				6.4
11	6.9	4.9	7.7	2.9	~/	5.9	7.6	8.2	6.4	10.7 5	5.2	6.4 8	8.4 8.1		8.9 6.8	9 8	3.1	9.5	9.8	8.9	6.9	3.8	3.4	3.1	3.8	3.3	3.6	3.2			6.1
12	7.3	3.9	6.2	9	_	6.1	7.7	8.9	3	7.4 6	6.5	6.4 6	6.6 9.	9.8	9 5.1	1 7.4	4 2.3	5.4	9.9	5.2	5.4	2.4	2.2	2.3	2.4	4.1	3.4	4.3			5.5
13	9.9	4.9	5	3.2		7.4	5.5	9	2.4	4.7 4	4.1 4	4.9 5	5.5	7 10	10.4 2.8	8 6.8	3 2.7	3.9	10.1	4.8	4.7	4.4	1.6	2.3	3.1	4	4.1	3.8			5.0
14	4.4	5.5	3.2	3.6	~	4.9	3.7	5.3	2.5	φ.	3.7 3	3.7	4	4.8 6.	6.3 2.4	4 5.8	3 2.1	3.4	8.9	3.3	4.1	2.5	1.1	1.6	1.8	3.2	3.1	1.6			3.7
15	3.2	5.4	3.7	1.4	~	1.4	3.5	3.7	2.5	3.1	3.6	2.5	3.7 5	5.1 5.	5.3 1.6	5	2.2	3.6	9.4	ო	3.6	3.1	1.2	1.7	1,3	2.4	3.3	1.3			3.4
16	3.5	5.7	4	4.1		4	3.9	3.9	2.7	2.3	3.7	2.4 3	3.8	3.2 5.7	7 1.6	6 5.8	3 2.4	2.4	9.9	3.2	33	2.7	4.	-	8.	2.1	3.7	1.1			3.4
17	5.1	5.9	5.2	2	7.2	5.2	9)	5.2	6.4	3.6	4.7	3.8	5.7	4.6 6.	6.3	2 5.4	3.1	3.2	89	3.7	3.9	ო	6.	1.3	2.6	2	33	1.5			4.3
9	~	8.9	6.4	6.7	8.9	6.1	14.6	1.8	9.1	5.7 5	5.5	7.5	9.4	13.6 12.7	7. 5.4	4 6.6	33	7.1	1.4	10.2	6.5	38	3.2	1.3	7.4	3.5	5.7	4.			7.3
19	5.7	9.6	6.7	7.1	9.5	1.0	15.6	6	11.6	5.5	4.9	8.9	10.8	14 14	14.8 6.8	8	5	8.3	13.9	8.6	σ	5.8	4.3	1.9	6.9	6.4	8.7	1.5			8.1
20	6.9	8.9	5.1	6.2	9.5	10.9	8.9	10.8	6.3	5.2 5	5.5	5.7 8	8.1 13.1	3.1 9.7	7. 4.4	4 3.7	5.3	7.2	10.9	~	8	5.3	2	1.5	6.4	5.3	9				2.0
21	6.5	5.9	5.4	7.2	8.7	1	7.3 7	7.6	5.4	4.9	3.8 4	4.8 6	6.8 9.	9.4 8.	8.9 3.7	7 3.3	3 5.3	6.5	6.3	7.9	7.1	3.9	3.3	1.9	4.1	4.9					6.1
22	5.6	7.2	5.4	7	6.3	10.1	5.8 7	7.4	4	3.6	3.9	3.7 4	4.6 8.	8.9	7 4	4.3	3 6.3	4.8	5.9	5.8	6.9	4	3.4	1.8	5	4.3					5.4
23	6.3	6.4	3.9	9	5.4	8	8.5	6.6	4.9	3.7	4	4	5 8	8.7 6.	6.3 3.2	2 4.8	3 5.7	7.5	4.3	9.9	7.2	4.6	4.1	2.6	5	3.8					5.5
24	6.9	5.8	3.5	4.4 4	4.7	9.9	6.7	5.8	3.1	3.3	3.2 2	2.6	5 7	8 4.7	7 2.4	4 3.7	5.3	6.4	3.9	4.5	6.5	5.2	3.3	2.1	4.3	3.2					4.7
MEDIA	6.3	5.4	5.9	4.1 E	6.2	5.7	7.0	6.5	4.6	4.2 3	3.8 4	4.4 5	5.2 7.	7.3 6.	6.9 3.6	6 4.6	3.5	5.5	7.4	5.6	5.7	4.3	3.3	2.2	3.4	3.7	3.6	2.2			
ZIW	3.2	2.7	3.2	2.0	2.2	2.4	3.2	3.7	2.4	2.0 1	8.	1.6	3.	3.2 2.	2.2 1.6	6 2.1	1 2.1	2.4	3.9	3.0	33	2.4	1.1	1.0	5.	2.0	1.6	1.			
MAX	8.5	8.9	8.0	7.2	9.5 1	11.0	15.6 1	11.8 11.6		10.7 6	6.5	9.8	10.8 14	14.0 14	14.8 7.1	1.4	4 6.3	9.2	13.9	10.2	9.0	6.7	5.5	3.4	7.4	8.9	8.7	4.3			

PROV		COM	COMUNE		ST/	STAZ. RILEVAMENTO	LEVA	MEN	01		Ь/	ARAM	PARAMETRO			N	UNITA' DI MIS.	MIS.		Σ	METODO	0		PERIOD0	00	里	TEMPO MED.	MED.		ERIOD	PERIODO OSS.	. :
BL		Trichiana	iana		-	MEZZO MOBILE	O M O	BILE			BEN	BENZENE	(сене)	(9			pg/m³		6	ascro	mato	gascromatografia	-	febbraio-09	60 oi		ORA			¥	MESE	
															盟	FEBBRAIO 2009) 2005	_														
gg/ore	-	2	က	4	2	9	_	00	6	10	11	12	13	14	15	16 1	17 1	18 1	19 20	0 21	1 22	2 23	24	25	26	27	28	29	30	31	G-MEDIO	900
1				4.6	4.8	2.9	3.4	3.2	3.4	3.7	4.2	1.8	1.9	9		(n)	3.9 5.	5.5 3.1	1 3.1	1 2.6	9	2.5	3.7	2.1	2.8	2.9	2.3				3.2	2
2				4.2	4.5	2.8	2.4	3.1	2.9	3.2	4.1	2	1.9	2.9			4 3.	3.9 3.3	3	3.4	1 2.8	3 2.6	2.8	1.5	2.2	2.5	2				3.0	.0
3				4	4.1	3.4	2.2	2.3	2.5	9	4.8	1.9	1.8	2.4		ന	3.9 1.	1.9 7.6	6 2.9	9 3.1	3.3	3 2.2	2.5	1.2	2.1	2.3	2.2				2.9	9
4				4.3	3.9	3.3	2.1	2.2	2.7	2.9	4.3	1.9	1.8			(n)	3.3 2.1	1 9.7	7 2.3	3 3.4	1 2.8	3 2.3	2.6	1.3	2	2.4	2				3.0	0.
5				4.1	3.6	9	1.9	2.4	3.1	2.8	4.2	2	1.7			(n)	3.3 2.	2.2 4.9	2	4 2.9	3 2.2	2 2	2.8	1.4	1.9	1.9	1.9				2.7	7
9				4.1	3.3	2.7	2	2.4	3.2	2.7	3.9	1.8	1.9			ന	3.4 2.1	1 3	3 2.5	5 2.9	3 2.2	2 2.2	2.7	1.3	1.9	2.2	2				2.6	.6
7				4.9	8.4	2.8	2.2	2.5	2.9	ო	4.4	2.5	2.1			ന	3.3 2.	2.2 3	3 2.5	5 3.1	1 2	2.4	ო	2	1.9	2.5	1.9				2.8	ω.
8				5.5	4.8	3.3	2.3	2.5	3.3	3.7	4.8	3.1	2.7			(n)	3.8 3.1	1 5	5 4.4	4 3.6	3 2.3	3.2	3.7	2.6	3.5	3.6	2.5				3.5	5.
6				9.7	7	4.5	2.8	2.8	1.4	7.7	4.1	6.3	5.1			^	7.1 4.7	7. 5.6	5	3.7	7 2.9	9.6	ω	3.4	6.3	9.9	3.2				5.4	Þ.
10				5.2	8.3	4.7	2.2	2.7	3.9	5.4	3.5	5.5	4.5			^	7.2 3.	3.7 4.6	6 4.3	3 6.4	3.3	11.6	3 7.2	3.7	5.9	9	4.3				5.2	2
11				5.1	5.5	3.7	2.1	2.4	4.1	5.3	3.8	4.6	2.8			9	6.3 3.	3.2 3.3	3 2.8	8 5.9	3 2.6	3 7.2	5.4	2.3	2	4.5	3.2				4.0	0.
12				4.6	5	4.3	2	2.7	3.9	5.3	4.7	3.1	2		,	1.9 4	4.1 3.	3.4 3	3.5	5 3.7	1.7	6.4	2.8	1.5	1.2	2.5	2.4				3.3	ε,
13				4	4.8	3.8	2.1	2.7	3.1	3.7	3.8	2.2	2.9			2.3	3 2.	2.2 3.1	1 0.5	5 2.4	1.6	3.5.6	2	1.5	2.7	2.2	2				2.8	ω.
14			5	3.5	3.7	3.7	3.7	2.7	2.3	3.9	1.9	2.1	1.9			2.2 2.	2.8 2.	2.2 2.9	9 0	1.9	1.6	3 4	1.6	1.3	2	1.8	1.7				2.5	5
15			3.9	3.3	3	3.3	2.1	2.8	2.3	3.7	2.1	2.2	2.1			2.2 2.	2.9 2.	2.7 3	8.0 8	8 1.7	7 1.8	8 4.4	1.7	1.2	1.5	1.6	1.8				2.4	4
16			3.9	3.3	2.7	3.9	1.9	2.6	2	3.6	1.9	2.2	2.1			9	3 2.	2.9 3	1.9	9 1.6	1.7	7 4	1.9	1.3	1.2	1.4	2.4				2.5	5
17			3.7	3.6	2.9	3.6	2.3	3.2	2.3	4	2	2.3	2		- 1	2.8	3.2 2.	2.9 0.2	2 2.1	_	9.	3.9	1.7	1.5	1.6	1.6	2.6				2.5	55
18			9	2	3.6	4.4	2.1	е	2.9	1.4	2.1	2.7	2.9		-	4.7	3.8	3.2 1.8	8 2.9	9.39	2	6.4		1,9	6,	2.2	ო				3.3	е С
19			8.8	7.1	5.9	4.2	33	3.9	1.	5.6	9.	2.6	2.5		-	4.5	6.2	3.8	3.8	ω 4	2.3	89	2.2	2.2	2.7	4 4.	88				4.2	2
20			8.3	7.5	5.6	5.6	3.5	4.4	3.8	5.6	2.1	3.8	3.7		_	6.3	5.6	5 2.8	38	3.5	3.2	8.5	7	2.8	3.5	3.6	33				4.5	ν.
21			7.3	7.8	4.6	4.5	4.3	4.4	4.4	6.4	2.5	2.6	3.2		_	4.9 5	5.8 4.	4.3 4.4	4 3.3	3 5.6	3.2	6.3	1.5	2.6	3.4	3.6	4.5				4.4	4
22			5.2	9.9	4.4	4.5	4.1	3.7	4.3	5.5	2.3	2.2	2.8		_	4.8 5	5.6 4.	4.2 3.8	8 4	3.5	5 2.7	5.1	1.5	2.7	4.2	3.2	6.3				4.1	1
23			4.5	5.4	4.4	4.5	4.5	4.6	3.9	9	2	1.7	3.6		_	4.3 5	5.3 3.	3.9 4.2	2 4.3	3 3.6	3 2.6	3.9	2.3	2.7	2.6	2.4	4.9				3.8	ω.
24			4.3	5.3	3.5	4.6	3.4	3.7	4	5.2	2.2	1.7	3.3			4.2 5	5.5 3.	3.5 3.5	5 3.5	5 3.3	3 2.8	3 4.7	1.9	2.7	9	2.2	4				3.6	.6
MEDIA			5.5	5.0	4.5	3.8	2.7	3.0	3.3	4.4	3.2	2.7	2.6	2.8		3.7 4	4.4 3.	3.3 3.8	8 2.9	9 3.4	1 2.4	5.0	2.9	2.0	2.7	2.9	2.9					
ZIW			3.7	3.3	2.7	2.7	1.9	2.2	2.0	2.7	1.9	1.7	1.7	2.4		1.9 2	2.8 1.	1.9 0.2	2 0.0	0 1.6	3 1.6	3 2.0	1.5	1.2	1.2	1.4	1.7					
MAX			8.8	7.8	8.3	9.6	4.5	4.6	4.4	7.7	4.8	6.3	5.1	3.0		6.3 7	7.2 5.	5.5 9.7	7 5.0	6.4	1 3.3	3 11.6	8.0	3.7	6.3	9.9	6.3					

COMUNE STA			STA	STA		STAZ. RILEVAMENTO	EVA!	MENT	0.		PA	PARAME	ETRO (CRHG)			IN	UNITA' DI MIS.	MIS.	=	ME Group	METODO	o gen		PERIODO	0 8		TEMPO MED.		띮	PERIODO OSS.	oss.
MEZZO MOBILE	MEZZO MOBILE	MEZZO MOBILE							-	_	Z		2		- :	_ ;	m/6rl		5	gascromatograna	nato 1	<u>a</u>	_	marzo-03	3		\$	\exists		MESE	
7 8 7 0 0 10	0 0 7 0 0 10	0 0 2 8 8	0 0 2	7 0 0	7 0 0 40	0 0	0	ŧ		-		5	5	- F	_ 4	MARZO 2009	900	10	2	5	2	2	72	25	30	7.0	× ×	20	S	5	O.MEDIO
4 45 22 26 14 14 12 2 16 07	22 2.6 1.4 1.4 1.2 2 1.6 0.7	2.6 1.4 1.4 1.2 2 1.6 0.7	1.4 1.4 1.2 2 1.6 0.7	1.4 1.2 2 1.6 0.7	1.2 2 1.6 0.7	2 2 1.6 0.7	1.6 0.7	0.7	_	11 23		8.0				-	1-	-			1	-	9.	2	2	. C	6.	1 9	3 4.	Ī.,	1.8
2.1 1.6 1.3 1.4 1.5 1.2 1.2 0.7	2.1 1.6 1.3 1.4 1.5 1.2 1.2 0.7	1.6 1.3 1.4 1.5 1.2 1.2 0.7	1.3 1.4 1.5 1.2 1.2 0.7	1.4 1.5 1.2 1.2 0.7	1.5 1.2 1.2 0.7	1.2 1.2 0.7	1.2 0.7	7.0	\vdash	ΙΞ.	۳	0.7	-	1.5 1.	1.7 1.	1.5 1.1	1.6	-	_	1.5	\vdash	£.	9.			6.	4.1	7.0	4.	-	1.5
33 32 21 16 13 13 11 12 13 05 1	2.1 1.6 1.3 1.3 1.1 1.2 1.3 0.5	1.6 1.3 1.3 1.1 1.2 1.3 0.5	1.3 1.3 1.1 1.2 1.3 0.5	1.3 1.1 1.2 1.3 0.5	1.1 1.2 1.3 0.5	1.2 1.3 0.5	1.3 0.5	0.5	\vdash	_	اد،	0.7	1	1.3 1.	1.6 1.	1.3 1.1	1.5	10		1.6	2	1.3	1.6			1.3	1.4	6.0	1.2	8.0	1.4
2.7 3 2.1 1.5 1.1 1.3 1.5 1.1 1.2 0.5 0.9	2.1 1.5 1.1 1.3 1.5 1.1 1.2 0.5 0.9	1.5 1.1 1.3 1.5 1.1 1.2 0.5 0.9	1.1 1.3 1.5 1.1 1.2 0.5 0.9	1.3 1.5 1.1 1.2 0.5 0.9	1.5 1.1 1.2 0.5 0.9	1.1 1.2 0.5 0.9	1.2 0.5 0.9	0.5 0.9	0.9	-		0.5	Ψ.	1.1	1.5 1.	.2 0.9	9 1.3	9.0		1.2	1.5	1.3	1.6			1.1	1.1	0.8	,	9.0	1.3
2.8 2.9 1.8 1.5 1.1 1.2 1.2 0.8 1.3 0.5 0.9 0	1.8 1.5 1.1 1.2 1.2 0.8 1.3 0.5 0.9	1.5 1.1 1.2 1.2 0.8 1.3 0.5 0.9	1.1 1.2 1.2 0.8 1.3 0.5 0.9	1.2 1.2 0.8 1.3 0.5 0.9	1.2 0.8 1.3 0.5 0.9	0.8 1.3 0.5 0.9	1.3 0.5 0.9	0.5 0.9	6.0	-		0.6	Ψ.	1.1	4	2 0.9	9 1.3	9.0		0.9	1.2	1.3	1.6			1.1	1.2	2.0	-	8.0	1.2
28 3.7 1.8 1.5 1.1 1.4 1.2 0.7 1.2 0.7 0.9 0	1.8 1.5 1.1 1.4 1.2 0.7 1.2 0.7 0.9	1.5 1.1 1.4 1.2 0.7 1.2 0.7 0.9	5 1.1 1.4 1.2 0.7 1.2 0.7 0.9	1.4 1.2 0.7 1.2 0.7 0.9	4 1.2 0.7 1.2 0.7 0.9	0.7 1.2 0.7 0.9	1.2 0.7 0.9	0.7 0.9	6.0	\vdash		0.6	6.0	<u>+</u>	ω -	2 0.9	9 1.4	t 0.6		0.9	1.5	1.3	1.5			- -	1.1	9.0	6:0	9.0	1.2
28 3.7 2 1.5 1.3 1.1 1.6 0.7 1.2 0.9 1.2 0	2 1.5 1.3 1.1 1.6 0.7 1.2 0.9 1.2	1.5 1.3 1.1 1.6 0.7 1.2 0.9 1.2	1.3 1.1 1.6 0.7 1.2 0.9 1.2	1.1 1.6 0.7 1.2 0.9 1.2	1.6 0.7 1.2 0.9 1.2	0.7 1.2 0.9 1.2	1.2 0.9 1.2	0.9 1.2	1.2			0.8	7	1.1 1.	1.3 1.	1.4 1.3	3 1.3	9 0.8		1.1	1.3	1.6	1.8			1.7	1.3	9.0	1.2	1.1	1.4
3 43 32 25 16 25 2 1 2 1 2 15 24 2	32 25 16 25 2 1 2 15 24	2.5 1.6 2.5 2 1 2 1.5 2.4	1.6 2.5 2 1 2 1.5 2.4	2.5 2 1 2 1.5 2.4	2 1 2 1.5 2.4	1 2 1.5 2.4	2 1.5 2.4	1.5 2.4	2.4		0.1	2.2	1.9	1.4 1.	1.7 2.	2.3 2.1	1 2.1	1.6		1.4	1.5	2.4	2.6			1.7	1.7	9.0	2.4	3.5	2.1
3.4 4.5 4.2 3.1 2.3 2.6 2 1.2 4.8 2.8 3.2 4	4.2 3.1 2.3 2.6 2 1.2 4.8 2.8 3.2	3.1 2.3 2.6 2 1.2 4.8 2.8 3.2	2.3 2.6 2 1.2 4.8 2.8 3.2	2.6 2 1.2 4.8 2.8 3.2	2 1.2 4.8 2.8 3.2	1.2 4.8 2.8 3.2	4.8 2.8 3.2	2.8 3.2	3.2			4.1 2.	o	2.2	2 2.	2.5 3.7	7 4.1	1.6		1.6	1.6	3.3	3.3			9.	2	8.0	1.5	2.4	2.7
5.4 4.8 4.1 2.9 3 2.2 1.9 1.1 2.3 1.2 2.8 3	4.1 2.9 3 2.2 1.9 1.1 2.3 1.2 2.8	2.9 3 2.2 1.9 1.1 2.3 1.2 2.8	3 2.2 1.9 1.1 2.3 1.2 2.8	2.2 1.9 1.1 2.3 1.2 2.8	1.9 1.1 2.3 1.2 2.8	1.1 2.3 1.2 2.8	2.3 1.2 2.8	1.2 2.8	2.8		(7)	2	2	1.8 1.	1.7 1.	1.9 2.7	7 2.9	1.6		1.4	1.7	2	2.4			1.7	2.7	7.0	1.5	1.7	2.3
5.5 4.3 3.6 2.1 1.8 1.5 2 0.8 1.7 1.3 1.3 1.1	3.6 2.1 1.8 1.5 2 0.8 1.7 1.3 1.3	2.1 1.8 1.5 2 0.8 1.7 1.3 1.3	1.8 1.5 2 0.8 1.7 1.3 1.3	1.5 2 0.8 1.7 1.3 1.3	2 0.8 1.7 1.3 1.3	0.8 1.7 1.3 1.3	1.7 1.3 1.3	1.3 1.3	1.3	Н	:	1	5 1	.3 1.	1.3 1.	1.3 1.3	3 2.2	2 0.7		1.2	1.3	1.5	2.1			1.3	2.7	6.0	2.3	1.2	1.8
5.6 3.5 2.4 1.8 2.6 1.2 2 0.8 1.4 1 1.2 0.7	2.4 1.8 2.6 1.2 2 0.8 1.4 1 1.2	1.8 2.6 1.2 2 0.8 1.4 1 1.2	2.6 1.2 2 0.8 1.4 1 1.2	1.2 2 0.8 1.4 1 1.2	2 0.8 1.4 1 1.2	0.8 1.4 1 1.2	1.4 1 1.2	1 1.2	1.2			_	Ψ.	1.1 1.	1.6 0.	0.9 0.7	7 1.4	t 0.5	10	1.1	1.2	1.1	2	0.5		7.0	2.2	1.1	1.8	-	1.5
6 2.9 2.5 2.4 2.4 2.8 1.7 0.7 1.2 0.5 1.1 0.7	2.5 2.4 2.4 2.8 1.7 0.7 1.2 0.5 1.1	2.4 2.4 2.8 1.7 0.7 1.2 0.5 1.1	2.4 2.8 1.7 0.7 1.2 0.5 1.1	2.8 1.7 0.7 1.2 0.5 1.1	1.7 0.7 1.2 0.5 1.1	0.7 1.2 0.5 1.1	1.2 0.5 1.1	0.5 1.1	1.1	Н		0	6	1.2 1.	1.9 0.	0.8	1.3			0.8	1.2	0.8	2.2	1.1		9.0	1.8	-	1.2	0.7	1.6
3.9 2.4 2 2.7 2.6 0.9 1.3 0.5 2.2 0.3 0.8 0.7	2 2.7 2.6 0.9 1.3 0.5 2.2 0.3 0.8	2.7 2.6 0.9 1.3 0.5 2.2 0.3 0.8	2.6 0.9 1.3 0.5 2.2 0.3 0.8	0.9 1.3 0.5 2.2 0.3 0.8	1.3 0.5 2.2 0.3 0.8	0.5 2.2 0.3 0.8	2.2 0.3 0.8	0.3 0.8	0.8			7 0		0.9	1.4 0.	0.6 0.9	-			0.8	-	-	1.1	0.5		0.3	2.4	-	-	9.0	1.3
3.3 1.6 2.3 2.5 2 0.6 0.9 0.7 0.2 0.3 0.5	2.3 2.5 2 0.6 0.9 0.7 0.2 0.3 0.5	2.5 2 0.6 0.9 0.7 0.2 0.3 0.5	2 0.6 0.9 0.7 0.2 0.3 0.5	0.6 0.9 0.7 0.2 0.3 0.5	0.9 0.7 0.2 0.3 0.5	0.7 0.2 0.3 0.5	0.2 0.3 0.5	0.3 0.5	0.5		٠.	1	ь.	0.9	1.3 0.	0.6 0.9	-			0.8	~	1.3	9.0	0.5		0.3	2.6	6.0	6.0	6.0	1.1
3.3 1.4 2.4 2 2 0.7 0.7 1.1 0.1 0.4 0.3 C	2.4 2 2 0.7 0.7 1.1 0.1 0.4 0.3	2 2 0.7 0.7 1.1 0.1 0.4 0.3	2 0.7 0.7 1.1 0.1 0.4 0.3	0.7 0.7 1.1 0.1 0.4 0.3	0.7 1.1 0.1 0.4 0.3	1.1 0.1 0.4 0.3	0.1 0.4 0.3	0.4 0.3	0.3	-		0.9	ø	2.6 1.	1.5 0.	0.6 1.1	1 0.9	_	0.3	8.0	<u>+</u>	1.2	9.0	9.0		0.3	3.4	-	6.0	-	1.2
5.4 1.5 2.2 2.3 2.4 1 0.8 1.2 0.1 0.5 0.3 0	2.2 2.3 2.4 1 0.8 1.2 0.1 0.5 0.3	2.3 2.4 1 0.8 1.2 0.1 0.5 0.3	2.4 1 0.8 1.2 0.1 0.5 0.3	1 0.8 1.2 0.1 0.5 0.3	0.8 1.2 0.1 0.5 0.3	1.2 0.1 0.5 0.3	0.1 0.5 0.3	0.5 0.3	0.3	-		0.8	<u>"</u>	1.2	1.6	0.6 1.4	4 0.9	_	0.4	9.0	-	5.	9.0	0.7	9.0	4.0	3.4	9.0	8.0	4.	1.2
5.1 2 2.6 2.2 1.6 0.8 0.8 1.6 0.4 1.2 0.5	2.6 2.2 1.6 0.8 0.8 1.6 0.4 1.2	2.2 1.6 0.8 0.8 1.6 0.4 1.2	1.6 0.8 0.8 1.6 0.4 1.2	0.8 0.8 1.6 0.4 1.2	0.8 1.6 0.4 1.2	1.6 0.4 1.2	0.4 1.2	1.2	-	3.5		1 0	6	1.7 1.	1.6 1.1	1 1.7	7 1.2		9.0	0.8	1.3	1.5	9.0	-	0.7	0.5	2.7	8.0	6.0	1.4	1.4
6.4 2.1 4 2.1 2.3 3.6 0.9 2.6 0.6 1.4 0.7 1	4 2.1 2.3 3.6 0.9 2.6 0.6 1.4 0.7	2.1 2.3 3.6 0.9 2.6 0.6 1.4 0.7	2.3 3.6 0.9 2.6 0.6 1.4 0.7	3.6 0.9 2.6 0.6 1.4 0.7	0.9 2.6 0.6 1.4 0.7	2.6 0.6 1.4 0.7	0.6 1.4 0.7	1.4 0.7	4 0.7	-		1.6	1.4	1.7 1.	1.7 1.	4 2.9	9 2.2		0.8	0.9	4.	6.		1.9	0.9	6.0	3.3	1.2	1.1	2.2	1.9
10.2 3 4.6 1.7 2.8 3.5 1.2 3.1 1.5 1 0.5	4.6 1.7 2.8 3.5 1.2 3.1 1.5 1 0.5	1.7 2.8 3.5 1.2 3.1 1.5 1 0.5	2.8 3.5 1.2 3.1 1.5 1 0.5	3.5 1.2 3.1 1.5 1 0.5	1.2 3.1 1.5 1 0.5	3.1 1.5 1 0.5	1.5 1 0.5	1 0.5	0.5	\vdash		1.6	2 2	2.7 2.	2.8 1.	1.7 2.9	9 2.7		4.	1.6	2.3	2		2	1	1.1	3.5	9.1	2.7	1.7	2.4
8.9 3.5 4.7 2 2.5 3.8 1.7 1.8 2.6 1.4 1.2 2	4.7 2 2.5 3.8 1.7 1.8 2.6 1.4 1.2	2 2.5 3.8 1.7 1.8 2.6 1.4 1.2	2.5 3.8 1.7 1.8 2.6 1.4 1.2	3.8 1.7 1.8 2.6 1.4 1.2	1.7 1.8 2.6 1.4 1.2	1.8 2.6 1.4 1.2	2.6 1.4 1.2	1.4 1.2	1.2			2.5	1.6 1	1.7	2 1.	1.6 3.2	2 2.7	_	1.8	3.9	2.5	2.6		2.1	1.2	1.1	1.9	1.4	2.1	1.8	2.5
6.4 4 4.5 1.7 1.6 6 2.1 2.2 1.8 1.8 2.1 1	4.5 1.7 1.6 6 2.1 2.2 1.8 1.8 2.1	1.7 1.6 6 2.1 2.2 1.8 1.8 2.1	1.6 6 2.1 2.2 1.8 1.8 2.1	6 2.1 2.2 1.8 1.8 2.1	2.1 2.2 1.8 1.8 2.1	2.2 1.8 1.8 2.1	1.8 1.8 2.1	1.8 2.1	2.1			1.5 2.	_	2.2 2.	2.4 2.	2.5 2.5	5 1.8		1.1	4	2.6	2.3			1.6	1.1	1.6	1.3	1.7	1.8	2.4
4.7 2.8 3.3 1.3 1.4 3.8 3 1.9 1.2 1.5 1.1 1	3.3 1.3 1.4 3.8 3 1.9 1.2 1.5 1.1	1.3 1.4 3.8 3 1.9 1.2 1.5 1.1	1.4 3.8 3 1.9 1.2 1.5 1.1	3.8 3 1.9 1.2 1.5 1.1	3 1.9 1.2 1.5 1.1	1.9 1.2 1.5 1.1	1.2 1.5 1.1	1.5 1.1	1.1			1.9	οί	2.2 1.	1.9 1.	1.7 2.1	1.6		1.1	2.9	2	1.8			1.5	1.4	1.6	1.1	2	1.7	2.0
4 2.1 3.7 1.3 1.5 2.4 3 1.6 1.2 1.6 0.6	3.7 1.3 1.5 2.4 3 1.6 1.2 1.6	1.3 1.5 2.4 3 1.6 1.2 1.6	1.5 2.4 3 1.6 1.2 1.6	2.4 3 1.6 1.2 1.6	3 1.6 1.2 1.6	1.6 1.2 1.6	1.2 1.6	1.6	\vdash	9.0	1.4	2.4 1	οį	1.8	1.8 1.4	4 2.1	1.6		1.3	2.1	1.8	1.7			1.6	1.6	1.7	1.6	1.6	1.6	1.9
4.7 3.1 2.9 2.0 1.9 2.0 1.6 1.3 1.4 1.0 1.2	2.9 2.0 1.9 2.0 1.6 1.3 1.4 1.0	2.0 1.9 2.0 1.6 1.3 1.4 1.0	1.9 2.0 1.6 1.3 1.4 1.0	2.0 1.6 1.3 1.4 1.0	1.6 1.3 1.4 1.0	1.3 1.4 1.0	1.4 1.0	1.0		.2	-	1.4	1.4 1	1.6 1.	1.7 1.	1.4 1.7	7 1.7	1.0	0.1.0	1.5	1.6	1.6	1.6	1.1	1.1	1.1	2.1	1.0	1.4	1.4	
2.7 1.4 1.8 1.3 1.1 0.6 0.7 0.5 0.1 0.3 0.3	1.8 1.3 1.1 0.6 0.7 0.5 0.1 0.3	13 11 0.6 0.7 0.5 0.1 0.3	1.1 0.6 0.7 0.5 0.1 0.3	0.6 0.7 0.5 0.1 0.3	0.7 0.5 0.1 0.3	0.5 0.1 0.3	0.1 0.3	0.3	Н	55	, J	0.5 0	0.6	0.9	1.3 0.	0.6 0.7	7 0.9	9 0.5	5 0.3	9.0	5	9:0	9.0	0.5	9.0	0.3	1.1	9.0	8.0	9.0	
10.2 4.8 4.7 3.1 3.0 6.0 3.0 3.1 4.8 2.8 3.2 4	4.7 3.1 3.0 6.0 3.0 3.1 4.8 2.8 3.2	3.1 3.0 6.0 3.0 3.1 4.8 2.8 3.2	3.0 6.0 3.0 3.1 4.8 2.8 3.2	6.0 3.0 3.1 4.8 2.8 3.2	3.0 3.1 4.8 2.8 3.2	3.1 4.8 2.8 3.2	4.8 2.8 3.2	2.8 3.2	3.2			4.1	2.9 2	2.7 2.	2.8 2.	2.5 3.7	7 4.1	1.6	3 1.8	4.0	2.6	3.3	3.3	2.1	1.6	1.8	3.5	9.1	2.7	3.5	