Metodi di misura radiometrici: confronti e criticità

Rosella Rusconi ARPA Lombardia

La radioattività nelle acque potabili ed il gemellaggio di ARPA Veneto e ARPA Lombardia con la Polonia. Verona, 4 dicembre 2007

Cosa misurare?

- Attività α e β totale
- Trizio
- Isotopi dell'Uranio
- Ra-226
- Ra-228
- Rn-222
- Pb-210
- Po-210
- Isotopi del Torio
- Sr-90
- γ emettitori

Con quale sensibilità?

- Attività α e β totale
- Trizio
- Isotopi dell'Uranio
- Ra-226
- Ra-228
- Rn-222
- Pb-210
- Po-210
- Isotopi del Torio
- Sr-90
- γ emettitori

0,1 Bq/L; 1 Bq/L

100 Bq/L

- 3 Bq/L
- 0,5 Bq/l
- 0,2 Bq/L
- 100 Bq/L
- 0,2 Bq/L
- 0,1 Bq/L
- 0,6 Bq/L
- 4,9 Bq/L
- Cs-137: 11 Bq/L

Con quale sensibilità?

- Attività α e β totale
- Trizio
- Isotopi dell'Uranio
- Ra-226
- Ra-228
- Rn-222
- Pb-210
- Po-210
- Isotopi del Torio
- Sr-90
- γ emettitori

Il pretrattamento è sempre necessario

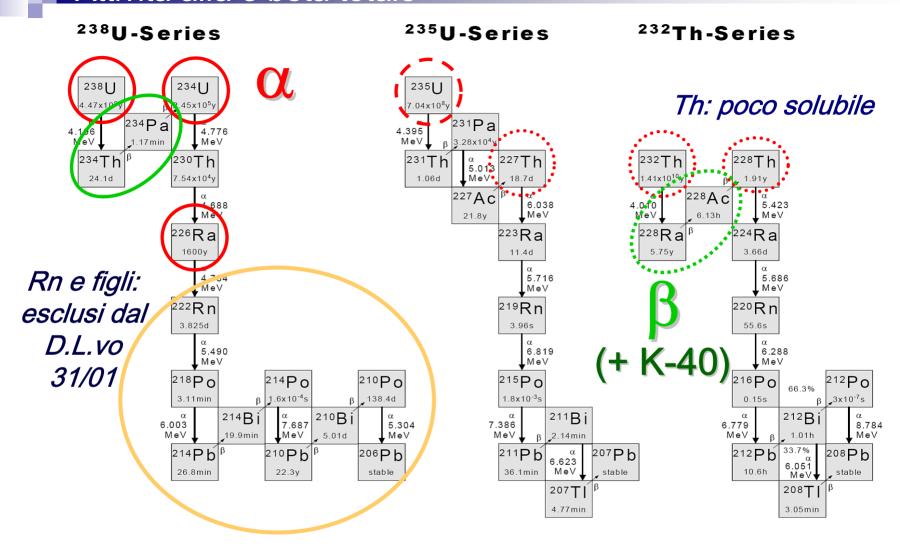
Nella maggior parte dei casi è necessaria una vera separazione radiochimica

1. Servono risorse radiochimiche
2. Problemi specifici di misure α e β (≠ γ)

Cosa misurare?

Parametro di screening: concentrazione di attività α e β totale

Livelli di screening (proposta):


 α : 100 mBq/L

 β : 1000 mBq/L

Sensibilità "desiderabili":

 α : 40 mBq/L

 β : 400 mBq/L

- ►E' necessario eliminare Rn e figli
- \triangleright Contributo di Pb-210/Bi-210 (β) e Po-210 (α) : ?

CONTEGGIO TOTALE della SORGENTE SPESSA (ISO 9696 E 9697)

- Acidificare con HNO₃ ed evaporare fino a quasi completa essiccazione (Rn)
- Aggiungere H₂SO₄ e
 calcinare in muffola a 350°C
- Distribuire su piattello

CONTEGGIO LSC CON DISCRIMINAZIONE α/β

(In attesa pubblicazione UNI – In inchiesta pubblica ISO)

- Acidificare con HNO₃ a pH
 2.5 e concentrare 1:10 per
 lenta evaporazione fino a pH
 1,5 (Rn)
- Trasferire in una fiala in PET

teflonato
aggiungendo
cocktail
scintillante
(base DIN)

PREPARAZIONE: ISO

1 - Tempo : 48 h

2. Ripetibilità nella preparazione del campione:

PREPARAZIONE: LSC

1.

Tempo : 1-8

2. Ripetibilità nella preparazione del campione:

Misura in condizioni di ripetibilità di campioni marcati, calcolo dello scarto tipo di ripetibilità (sottrazione componente poissoniana)

PREPARAZIONE: ISO

Tempo: 48 h

Ripetibilità nella 2. preparazione del campione:

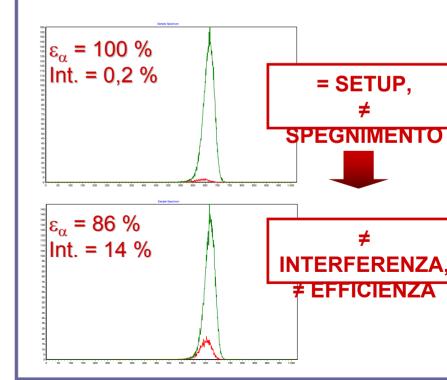
 α : 15 %

PREPARAZIONE: LSC

Tempo : 1-8

Ripetibilità nella 2. preparazione del campione:

 α : 4,5 % β : 2,5 %

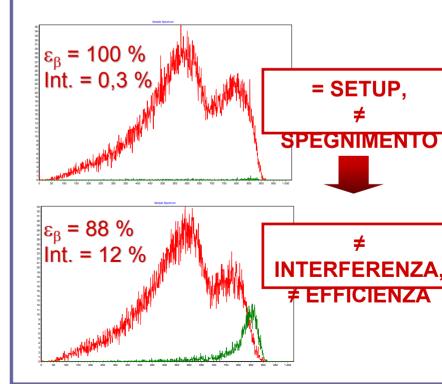

Contributo importante all'incertezza di misura

Impostazione e gestione strumento - ISO

Semplice nei contatori α e β totale, più laboriosa nei sistemi che misurano contemporaneamente α e β (impostazione discriminazione)

Impostazione e gestione strumento - LSC

■ Laboriosa: impostazione circuito di discriminazione, dipende dall'energia e dallo spegnimento del campione



Impostazione e gestione strumento - ISO

Semplice nei contatori α e β totale, più laboriosa nei sistemi che misurano contemporaneamente α e β (impostazione discriminazione)

Impostazione e gestione strumento - LSC

■ Laboriosa: impostazione circuito di discriminazione, dipende dall'energia e dallo spegnimento del campione

Impostazione e gestione strumento - ISO

- Semplice nei contatori α e β totale, più laboriosa nei sistemi che misurano contemporaneamente α e β (impostazione discriminazione)
- Verifica periodica delle prestazioni strumentali (ε, discriminazione, fondo)

Impostazione e gestione strumento - LSC

■ Laboriosa: impostazione circuito di discriminazione, dipende dall'energia e dallo spegnimento del campione

- Verifica periodica delle prestazioni strumentali (ε, discriminazione, fondo)
- Verifica periodica dei materiali (liquido scintillante, fiale)

EFFICIENZA: ISO

α : dipende dall'Energia:

$$\varepsilon$$
 (241Am) = 0,134 ± 0,011

$$\varepsilon$$
 (236U) = 0,090 ± 0,014 -33%

 β : dipende dall'Energia e dalla forma dello spettro

$$\varepsilon$$
 (90Sr/90Y) = 0,1012 ± 0,0052

$$\varepsilon$$
 (40K) = 0,0887 ± 0,0076 -12%

EFFICIENZA: LSC

■ α : non dipende dall'Energia

$$\varepsilon = 1$$

β : dipende dall'Energia e dalla forma dello spettro

$$\varepsilon$$
 (90Sr/90Y) = 0,591 ± 0,023

$$\varepsilon$$
 (40K) = 0,763 ± 0,024 +29%

DICHIARARE IL RADIONUCLIDE UTILIZZATO PER LA TARATURA, INFLUENZA IL RISULTATO

RICALCOLARE L'EFFICIENZA UTILIZZANDO MEDIE E INCERTEZZE RETTANGOLARI :

EFFICIENZA

$$\varepsilon$$
 (241Am) = 0,134 ± 0,011

$$\varepsilon$$
 (236U) = 0,090 ± 0,014

 $\varepsilon_{\text{rett}} = 0,112 \pm 0,013$

• ε_β (ISO):

$$\varepsilon$$
 (90Sr/90Y) = 0,1012 ± 0,0052

$$\varepsilon$$
 (40K) = 0,0887 ± 0,0076

 $\varepsilon_{\text{rett}} = 0.0949 \pm 0.0036$

INCERTEZZA DI MISURA E RISULTATI

ALFA		to % alla anza
Grandezza	ISO	L\$C
C_L	8,8 %	73,3 %
C_{F}	4,4 %	8,4 %
3	86,8 %	18,3 %
Q	0,0 %	0,0 %

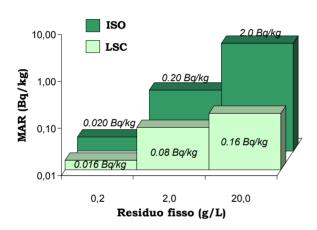
Comprende il contributo dell'incertezza di interferenza

BETA	Contribu varia	to % alla anza
Grandezza	ISO	LSC
C _L	16,4 %	83,9 %
C _F	6,0 %	14,1 %
3	77,6 %	2,0 %
Q	0,0 %	0,0 %

Comprende il contributo dell'incertezza di ripetibilità

ALFA	Contributo % alla varianza	
Grandezza	ISO	LSC
C _L	8,8 %	73,3 %
C _F	4,4 %	8,4 %
3	86,8 %	18,3 %
Q	0,0 %	0,0 %

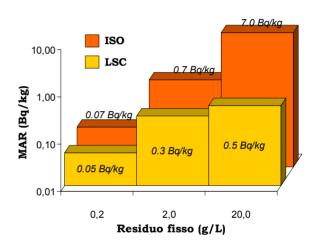
Risultato	73 ± 28	75 ± 18
(mBq/L):	(38%)	(24%)


BETA	Contributo % alla varianza	
Grandezza	ISO	LSC
C_L	16,4 %	83,9 %
C_{F}	6,0 %	14,1 %
3	77,6 %	2,0 %
Q	0,0 %	0,0 %

Risultato	119 ± 23	160 ± 70
(mBq/L):	(19%)	(44%)

SENSIBILITA'

ANALITICA

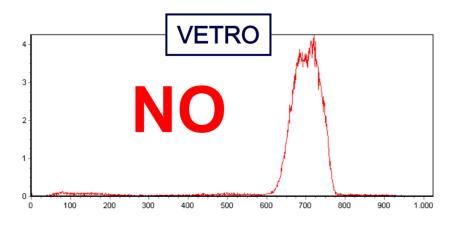

Alfa

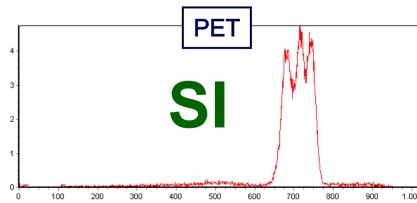
Sensibilità "desiderabile" : 40 mBq/L

- LSC: sempre raggiunta
- ◆ ISO: residuo fisso < 300 mg/L</p>

Beta

Sensibilità "desiderabile" : 400 mBq/L


- LSC: sempre raggiunta
- ▶ ISO: sempre raggiunta


Criticità proprie della LSC: FIALE

Fondo:

Fiala in vetro NO	Fiala in PET SI
7,182 ± 0,085 cpm	2,620 ± 0,051 cpm

- Impermeabilità al Rn: Vetro SI, PET NO, PET teflonato SI
- Influenza sulla discriminazione α/β :

Criticità proprie della LSC: LIQUIDO SCINTILLANTE

- Modalità di conservazione (temperatura ambiente)
- Mantenimento nel tempo delle prestazioni (capacità di discriminazione)
- Mantenimento delle prestazioni al variare del lotto di produzione (capacità di discriminazione, fondo)

Verificare periodicamente le prestazioni, anche attraverso l'uso di campioni marcati

Alcune considerazioni generali

- Ogni metodo analitico ha le sue criticità:
 Spettrometria γ: riproducibilità delle condizioni di taratura (geometria, densità e composizione chimica); utilizzo di materiali adeguati (es.: contenitori a tenuta di radon per misure di Rn e Ra); possibili disequilibri delle Σ radioattive naturali, etc.
- Abbiamo in genere minore dimestichezza con i metodi di misura della radiazione α e β , che presentano problemi peculiari
- Negli ultimi anni molti laboratori si sono dotati di contatori a scintillazione liquida: utili, ma non esenti da problemi specifici:
 - qualità dei materiali e costanza nel tempo delle loro prestazioni
 - 'sensibilità' alle caratteristiche proprie del campione (colore, pH, etc.)
 - cattiva risoluzione (α)
 - difficilmente è prevedibile l'uso di traccianti interni per efficienza e rese di separazione (cattiva risoluzione – traccianti radioattivi, modifica caratteristiche campione – traccianti chimici)
 - criticità dell'impostazione del circuito per la discriminazione α/β

Alcune considerazioni generali

- Molti laboratori sono coinvolti nelle pratiche per l'accreditamento dei metodi analitici (ISO 17025): siamo obbligati a ripensare a modalità di lavoro che davamo per scontate
- Nascono nuovi (e vecchi) problemi:
 - modalità di validazione dei metodi analitici
 - verifica periodica dei metodi
 - valutazione delle incertezze
 - modalità di espressione della sensibilità analitica
 - necessità di disporre di standard di taratura adeguati, e di garantirne l'affidabilità nel tempo (costi !!)
 - necessità di disporre di materiali di riferimento certificati
 - necessità di partecipare a circuiti interconfronto:

come rispondere?

Le nuove norme ISO propongono la valutazione della minima attività rivelabile secondo le nuove norme della serie ISO 11929 (dalla ISO 11929-7 in poi, che prevede l'uso di metodi statistici bayesiani per il calcolo dei limiti caratteristici): come adeguarsi?

Concludendo:

- Abbiamo qualcosa da imparare dalla chimica analitica: la preparazione di ogni campione per la misura, dai casi più semplici (spettrometria γ sul tal quale) a quelli più complessi (metodi radiochimici) implica un'incertezza di ripetibilità mai trascurabile a priori, e spesso rilevante
- I metodi radiochimici che non consentono la valutazione puntuale della resa (α/β tot, U in LSC, Ra-226 in LSC, Ra-226 in emanometria, etc.) devono essere oggetto di attività di attività di validazione 'robuste' e di verifiche periodiche (verifica della ripetibilità, analisi di campioni fortificati, confronti interlaboratorio, etc.)
- Metodi radiochimici su matrici 'complesse': la stima della resa non è
 'insensibile' alle caratteristiche della matrice in analisi (acque di scarico,
 terreno, materiali refrattari, etc.)
- E' fondamentale il ruolo degli Enti centrali di riferimento, sia per facilitare la pianificazione di momenti di scambio di esperienze che per l'organizzazione di attività di approfondimento e interconfronto