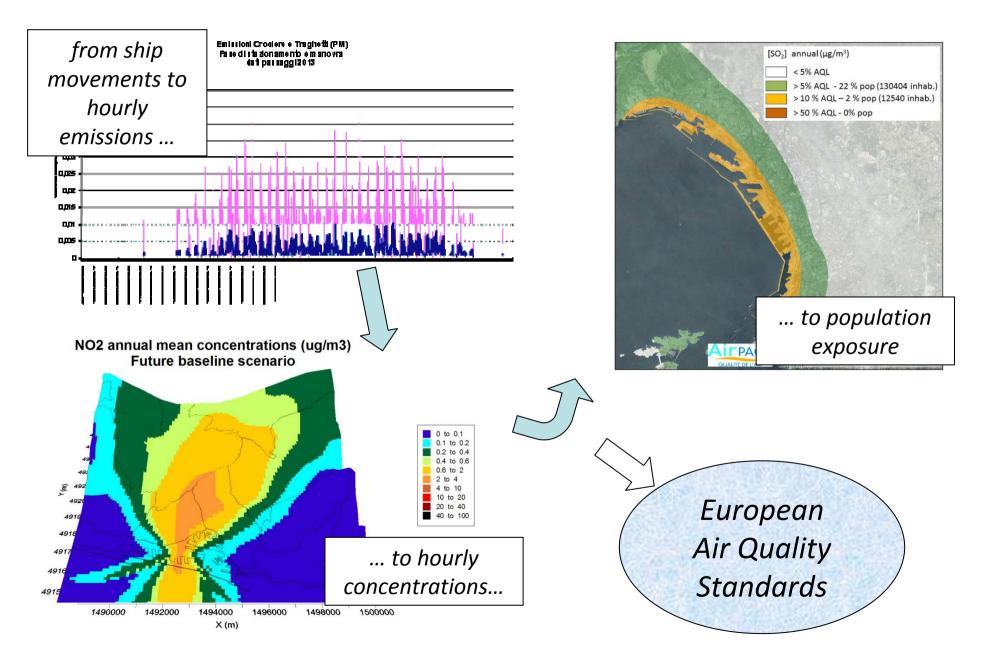


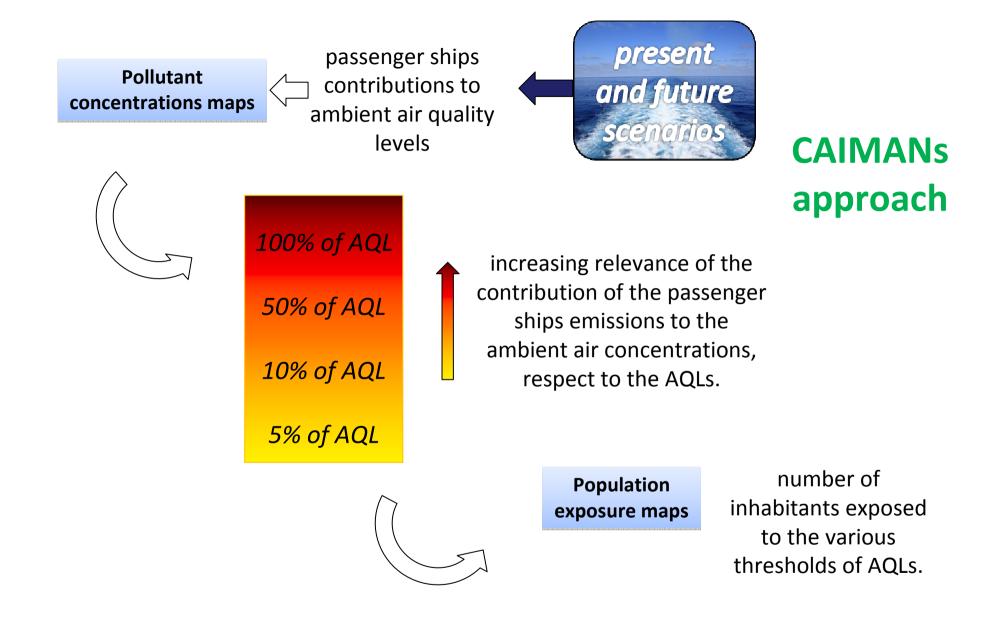
The results of CAIMANs project Maps on population exposure

ARPAV, IDAEA, Air PACA, UNIGE, AUTH


Silvia Pillon ARPAV

Mitigation Air Pollution in the Mediterranean Port Cities Venice, 12th June 2015

Summing up the CAIMANs methodology



The Air Quality Standards

Pollutant	Concentration	Averaging period	Legal nature	Permitted exceedences each year
Fine particles (PM2.5)	25 µg/m3	1 year	Target value entered into force 1.1.2010 Limit value enters into force 1.1.2015	n/a
Sulphur dioxide	350 µg/m3	1 hour	Limit value entered into force 1.1.2005	24
(SO2)	125 µg/m3	24 hours	Limit value entered into force 1.1.2005	3
Nitrogen dioxide	200 µg/m3	1 hour	Limit value entered into force 1.1.2010	18
(NO2)	40 µg/m3	1 year	Limit value entered into force 1.1.2010*	n/a
PM10	50 µg/m3	24 hours	Limit value entered into force 1.1.2005**	35
	40 µg/m3	1 year	Limit value entered into force 1.1.2005**	n/a
Lead (Pb)	0.5 μg/m3	1 year	Limit value entered into force 1.1.2005 (or 1.1.2010 in the immediate vicinity of specific, notified industrial sources; and a 1.0 µg/m3 limit value applied from 1.1.2005 to 31.12.2009)	n/a
Carbon monoxide (CO)	10 mg/m3	Maximum daily 8 hour mean	Limit value entered into force 1.1.2005	n/a
Benzene	5 µg/m3	1 year	Limit value entered into force 1.1.2010**	n/a
Ozone	120 µg/m3	Maximum daily 8 hour mean	Target value entered into force 1.1.2010	25 days averaged over 3 years
Arsenic (As)	6 ng/m3	1 year	Target value enters into force 31.12.2012	n/a
Cadmium (Cd)	5 ng/m3	1 year	Target value enters into force 31.12.2012	n/a
Nickel (Ni)	20 ng/m3	1 year	Target value enters into force 31.12.2012	n/a
Polycyclic Aromatic Hydrocarbons	1 ng/m3 (expressed as concentration of Benzo(a)pyrene)	1 year	Target value enters into force 31.12.2012	n/a

"Humans can be adversely affected by exposure to air pollutants in ambient air. In response, the European Union has developed an extensive body of legislation which establishes health based standards and objectives for a number of pollutants in air. [...]. These apply over differing periods of time because the observed health impacts associated with the various pollutants occur over different exposure times."

<u>http://ec.europa.eu/enviro</u> <u>nment/air/quality/standar</u> <u>ds.htm</u>

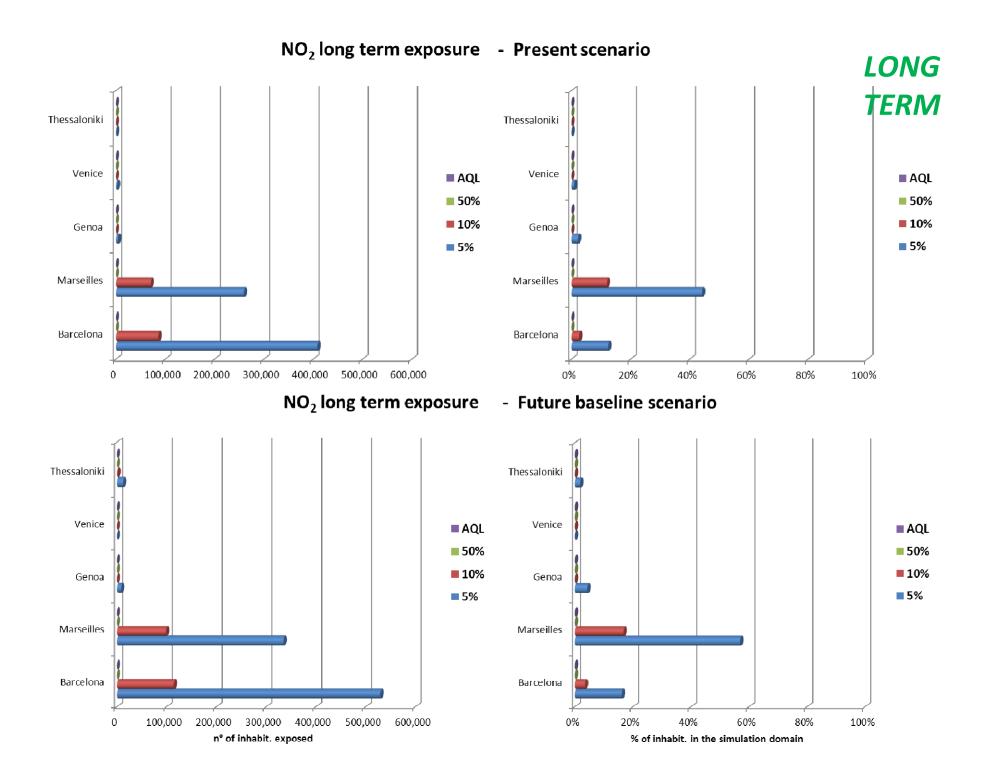
Programme colinancé par le Fonds Européen de Développement Régional Programme colinanced by the European Régiona Development Fund

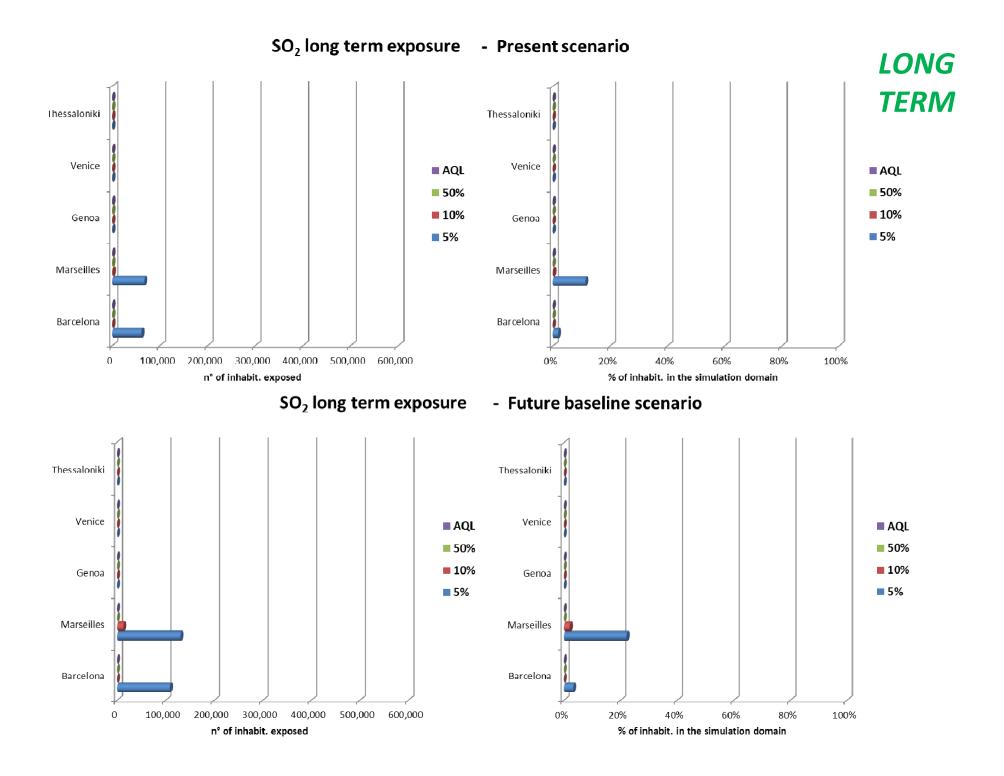
CAIMANs thresholds

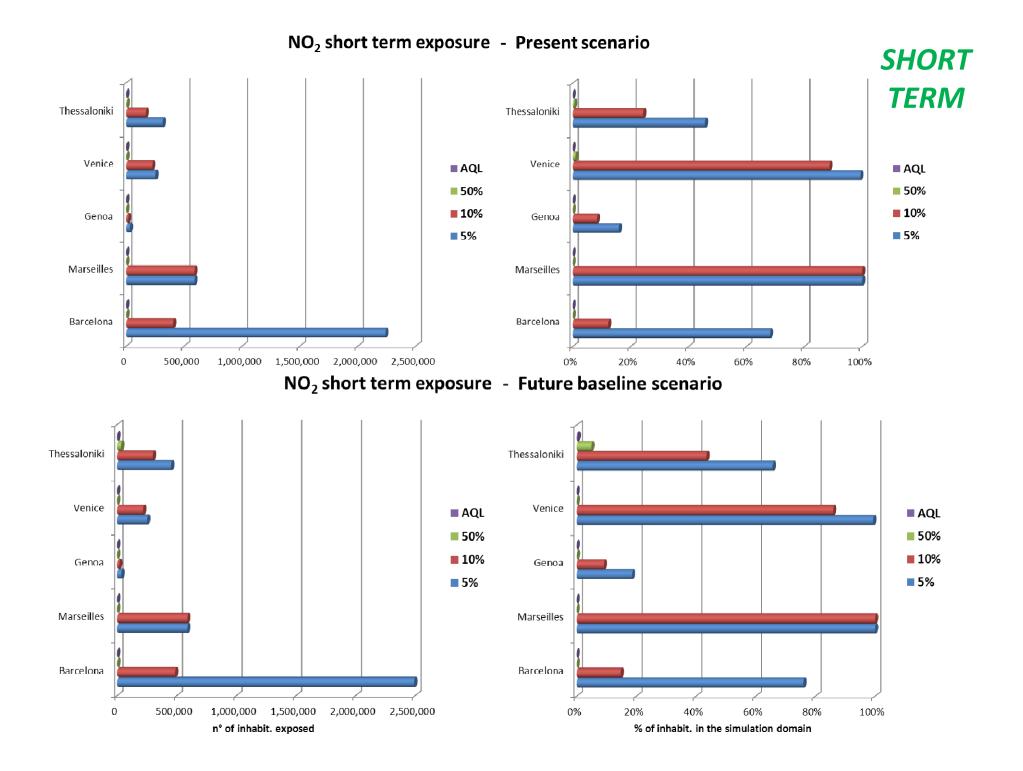
LONG TERM	NO ₂	SO ₂	PM10	PM2.5	Ni	Pb	As	Cd	B(a)P
	µ g/m³	μ g/m ³	μ g/m³	μ g/m³	ng/m ³	ng/m³	ng/m ³	ng/m ³	ng/m ³
100% AQL	40	20	40	25	20	500	6	5	1
50% AQL	20	10	20	12.5	10	250	3	2.5	0.5
10% AQL	4	2	4	2.5	2	50	0.6	0.5	0.1
5% AQL	2	1	2	1.25	1	25	0.3	0.25	0.05

SHORT TERM	NO ₂	SO ₂	SO _{2 (daily)}	PM10
	μ g/m³	µ g/m³	μ g/m³	μ g/m³
100% AQL	200	350	125	50
50% AQL	100	175	62.5	25
10% AQL	20	35	12.5	5
5% AQL	10	17.5	6.25	2.5

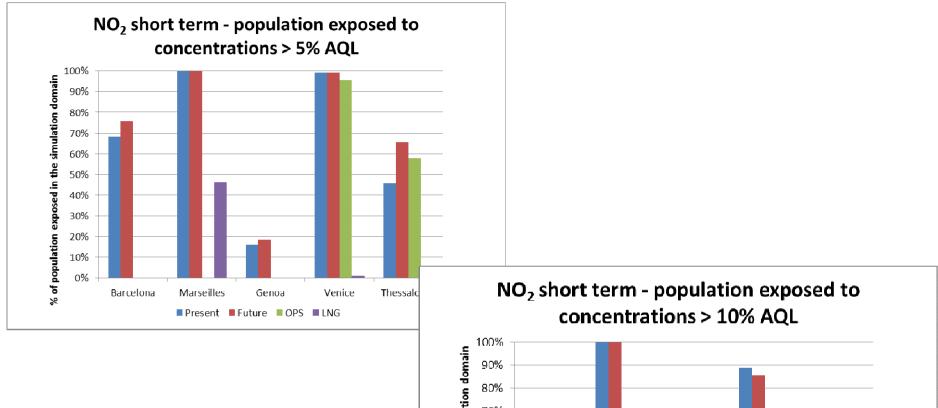
Concerning ship emissions, NO₂ and SO₂ are pollutants of major concern

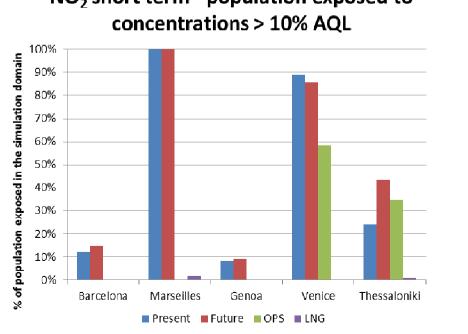

present scenario

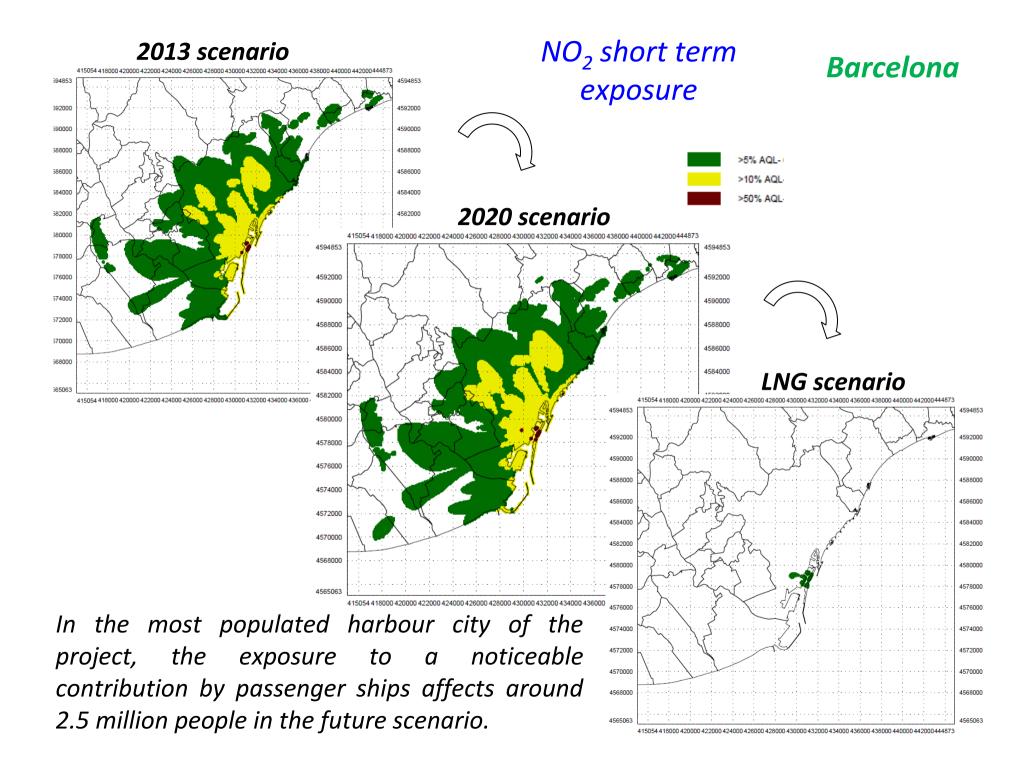

n° inhab.	NO ₂	SO ₂	PM10	-		Pb	-	Cd	B(a)P		n° inhab.	NO _{2 hourly c.}	SO _{2 hourly c.}	SO2 daily conc.	PM10 daily conc		
		Barc	elona (n°	of inhabita	nt in the m	odeling d	omain: 328	80290)				Barcelona					
AQL	0	0	0	0 0	0	0	0	C	0 0		AQL	ß	0	0	С		
50% AQL	0	o	0 0	0 0	0	0	0	C	0 0		50% AQL	1,761	0	0	C		
10% AQL	86,323) (o o	0	0	0	C	0 0		10% AQL	403,925	0	0	С		
5% AQL	408,977	61,040	(0 0	0	0	0	,	0 0		5% AQL	2,238,281	0	0	12,165		
	Marseilles (n° of inhabitant in the modeling domain: 588132)											Mars	eilles				
AQL	o	0	0 0	0 0	0	0	0	C	0 0		AQL	0	0	ρ	С		
50% AQL	o	0) (0 0	0	0	0	C	0 0		50% AQL	0	0	d	С		
10% AQL	70,768	937	(o o	0	0	0	C	0 0		10% AQL	588,132	82,806	2	C		
5% AQL	259,667	66,786	(0 0	381) о	0	,	0 0		5% AQL	588,132	488,066	79,557	С		
		Ge	enoa (n° of	inhabitan	t in the mo	deling do	main: 193	183)	r			Genoa					
AQL	0	o) (0 0	0	0	0	C	0 0		AQL	62	0	0	C		
50% AQL	0	0		0 0	0	0	0	C	0 0		50% AQL	101	0	0	С		
10% AQL	0	0	(0 0	0	0	0	C	0 0		10% AQL	16,200	0	0	С		
5% AQL	4,360	0		/	-	-	0	-	0 0		5% AQL	30,830	0	0	С		
		Ve	nice (n° o	f inhabitan	t in the mo	deling do	main: 2525	600)	-			Venice					
AQL	o	0		0 0	0	0	0	C	0 0		AQL	0	0	0	C		
50% AQL	o	o	0 0	0 0	0	0	0	C	0 0		50% AQL	2,430	0		С		
10% AQL	o	o		0 0	0	0	0	C	0 0		10% AQL	224,000	0	0	C		
5% AQL	2,430	0	-	o 0	•	0	0	C	0 0		5% AQL	251,000	15	0	С		
	Thessaloniki (n° of inhabitant in the modeling domain: 688617)									Thessaloniki							
AQL	0	9	(0 0	0	0	0	C	0 0		AQL	290	0	0	С		
50% AQL		↓ <u> </u> 0	0	0 0	0	0	0	C	0 0		50% AQL	3,848	0	0	С		
10% AQL		0	0	0 0	0	0	0	C	0 0		10% AQL	167,814	0	0	С		
5% AQL	579	0	0	0 0	0	0	0	C) 0		5% AQL	314,760	145	0	С		

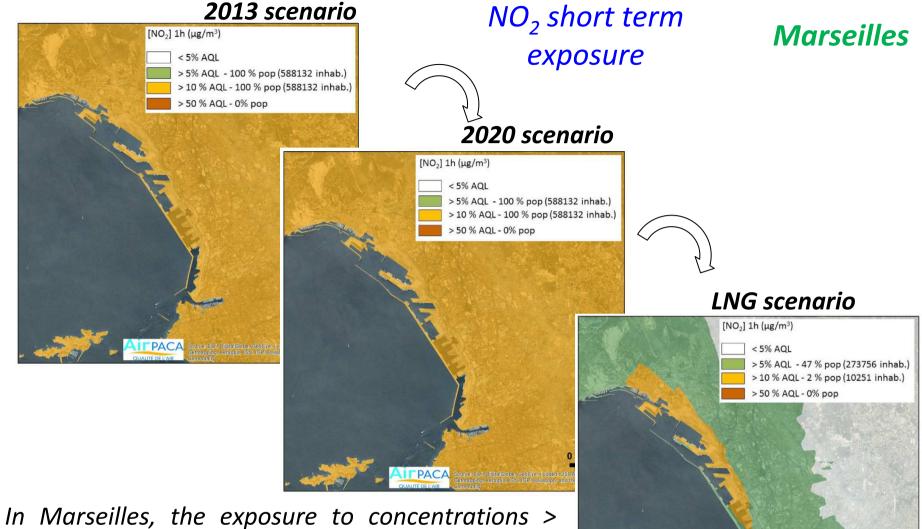

Generally, the exposure slight increases in the future scenario

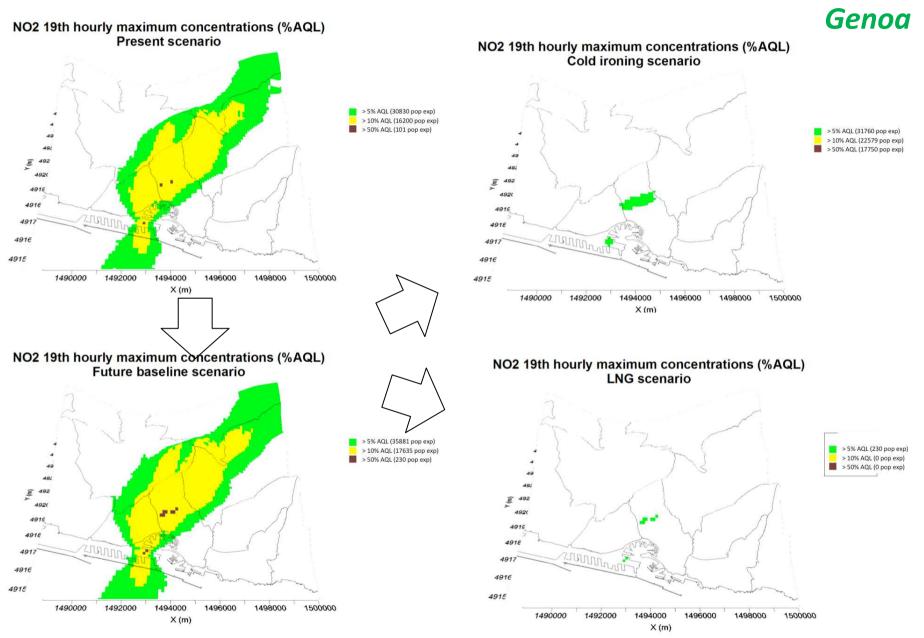
baseline future

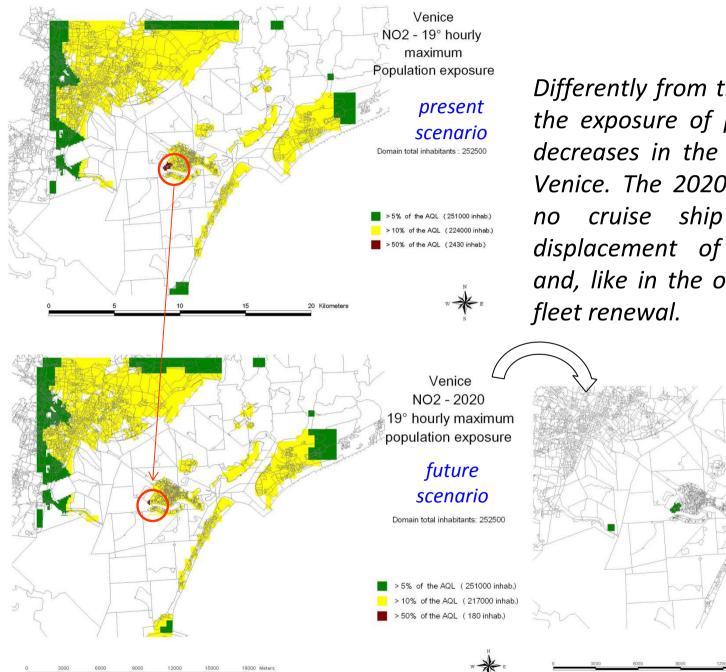

n° inhab.	NO ₂	-	PM10	-		Pb	As	Cd	B(a)P		n° inhab.	NO _{2 hourly c.}	SO _{2 hourly c.}		PM10 daily conc.
Barcelona (n° of inhabitant in the modeling domain: 3280290)											Barc	elona			
AQL	0	0	0	0	0	0	0	0		b	AQL	0	0	0	0
50% AQL	0	0	0	0 0	0 0	0	0	0		D	50% AQL	2,081	0	0	0
10% AQL	114,389	0	0	0	0	0	0	0		D	10% AQL	485,140	0	0	0
5% AQL	529,429	108,758	0	0	0	0	0	0		D	5% AQL	2,492,547	0	0	22,250
		Marse	illes (n° of	f inhabitan	it in the mo	deling do	main: 588	3132)					Mars	eilles	
AQL	0	0	0	0 0	0	0	0	0		D	AQL	0	0	0	0
50% AQL	0	0	0	0 0	0	0	0	0		D	50% AQL	0	0	0	0
10% AQL	98,627	12,540	0	0 0	3	0	0	0		D	10% AQL	588,132	215,834	41,253	0
5% AQL	334,736	130,404	0	3	10,208	0	0	0		D	5% AQL	588,132	578,361	194,573	3
		Ger	noa (n° of i	nhabitant	in the mod	leling dom	nain: 1931	83)	1	_	Genoa				
AQL	0	0	0	0 0	0	0	0	0		D	AQL	62	0	0	0
50% AQL	0	0	0	0 0	0 0	0	0	0		D	50% AQL	230	0	0	0
10% AQL	0	0	0	0 0	0 0	0	0	0		D	10% AQL	17,635	0	0	0
5% AQL	8,350	0	0	0 0	0 0	0	0	0		D	5% AQL	35,881	0	0	0
		Ven	ice (n° of i	inhabitant	in the mod	leling don	nain: 25250	00)		_		Venice			
AQL	0	0	0	0 0	0	0	0	0		D	AQL	0	0	0	0
50% AQL	0	0	0	0	0	0	0	0		o	50% AQL	180	0	0	0
10% AQL	0	0	0	0	0	0	0	0		o	10% AQL	217,000	0	0	0
5% AQL	3	0	0	0 0	0	0	0	0		D	5% AQL	251,000	1530	0	0
Thessaloniki (n° of inhabitant in the modeling domain: 688617)										Thessaloniki					
AQL	0	0	0	0 0	0 0	0	0	0		D	AQL	2,027	0	0	0
50% AQL	0	0	0	0 0	0 0	0	0	0		D	50% AQL	33,910	0	0	0
10% AQL	1,303	0	0	0 0	0 0	0	0	0	(D	10% AQL	299,436	145	0	0
5% AQL	12,478	0	0	0	0	0	0	0		D	5% AQL	452,645	1,013	290	290






NO₂: population exposed in the mitigation scenarios


The On Shore Power supply scenario had been analysed in Thessaloniki, Venice and Genoa, where it had been studied for both cruise ships and Ro-Pax.



In Marsellies, the exposure to concentrations > 10% of the AQL affects all the inhabitants in the simulation domain both in the present and future scenarios. The LNG scenario shows a drastic reduction in the number of people exposed to a significant contribution by passenger ships.

Both mitigation scenarios studied imply a drastic reduction of population exposed, highlighting the hotelling as the phase with major impact on short term concentrations.

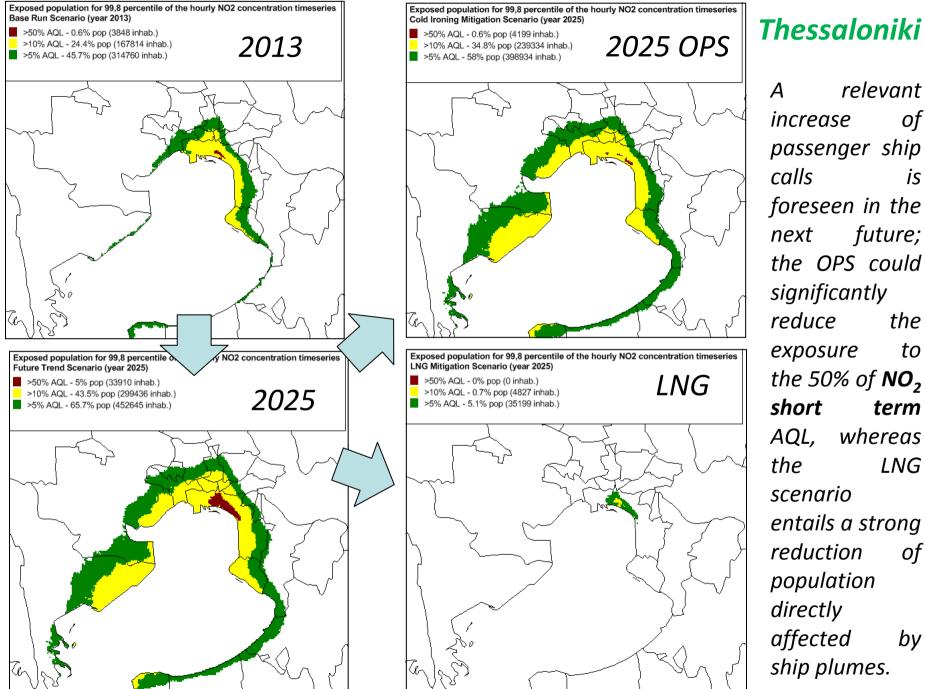
Venice

Venice LNG scenario

2020

NO2 - 19° hourly maximum

population exposure


Domain total inhabitants: 252500

5% of the AQL (2900 inhab.)

> 10% of the AQL (0 inhab.)

> 50% of the AQL (0 inhab.)

Differently from the other harbours, the exposure of population slightly decreases in the future scenario in Venice. The 2020 scenario foresees no cruise ship increment, the displacement of Ro-Pax terminal and, like in the other harbours, the fleet renewal.

relevant increase of passenger ship is foreseen in the future; the OPS could significantly reduce the exposure to the 50% of NO, term AQL, whereas LNG scenario entails a strong reduction of population directly affected by ship plumes.

Final remarks

Focusing on the contribution of passenger ship emissions on population exposure, CAIMANs results highlight:

- The air pollutants of major concern are NO₂ and in lesser extent also SO₂, particularly in respect to the short term values
- generally the impact of PM and micropollutants is not particularly significant
- without mitigation actions the impact on population is estimated to increase in the future scenarios
- the LNG scenario implies a drastic reduction of population exposure

CAIMANs Cruise and passenger ship Air quality Impact Mitigation ActioNs

THANK YOU FOR YOUR ATTENTION

<u>Lead Partner</u>: Environmental Protection Agency of Veneto Region ARPAV – Padoa (IT) <u>www.arpa.veneto.it</u>

Partners:

University of Genoa, Department of Physics (IT) <u>www.labfisa.ge.infn.it</u> Aristotle University of Thessaloniki (GR) <u>http://lap.physics.auth.gr</u> AIR PACA – Air quality observatory (FR) <u>http://airpaca.org/</u> Spanish Research Council - Institute of Environmental Assessment & Water Research IDAEA (ES) <u>http://www.idaea.csic.es/</u>

