#### I dati delle acque in Veneto - Seminario - Padova, 9 giugno 2015



# La valutazione quantitativa delle risorse idriche naturali

#### Stefano Tersigni

Direzione centrale delle statistiche socio-demografiche e ambientali Servizio Stato dell'ambiente U.O. Risorse idriche e clima



#### Istat e le risorse idriche

#### Programma Statistico Nazionale

Censimento delle acque per uso civile

Uso delle risorse idriche
acqua nell'industria
acqua in agricoltura
acqua per la produzione di energia
dissalazione

Rilevazione dati meteoclimatici ed idrologici valutazione delle risorse idriche naturali – bilancio idrologico indicatori su cambiamenti climatici

#### Attività internazionali

**UNECE Task Force on Climate Change related Statistics** 

Working Group "Statistics of the Environment" / Sub-Group "Water Statistics"

**Task Force on Water Accounts** 





#### **Questionari Eurostat-Ocse**

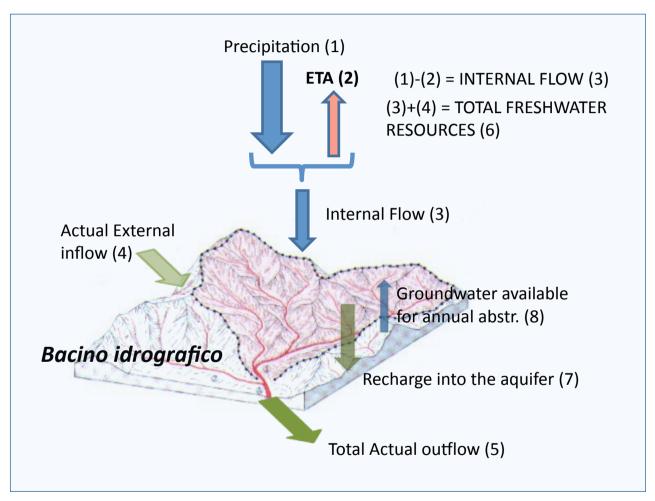


## Regional environmental questionnaire:

Dati richiesti a livello reginali e di distretto idrografico

## **Inland water questionnaire:**Dati richiesti a livello nazionale






## Indicatori Eurostat/Ocse

| Precipitation (P)                            |                      |  |  |  |  |
|----------------------------------------------|----------------------|--|--|--|--|
| Actual evapotraspitration (E)                | Freshwater resources |  |  |  |  |
| Internal flow (IF=P-E)                       |                      |  |  |  |  |
| Actual external inflow (EI)                  |                      |  |  |  |  |
| Total actual outflow (O)                     |                      |  |  |  |  |
| of which: into the sea (Os)                  |                      |  |  |  |  |
| of which: into neighbouring territories (Ot) |                      |  |  |  |  |
| TOTAL RENEWABLE FRESHWATER RESOURCES (IF+EI) |                      |  |  |  |  |
| Recharge into the aquifer                    |                      |  |  |  |  |
| Groundwater available for annual abstraction |                      |  |  |  |  |
| Freshwater resources 95 % of years, LTAA     |                      |  |  |  |  |

#### **Indicatori** Freshwater resources

## **Descrizione**



## Questionario Eurostat 'Inland Waters'

#### Tab. 1: Freshwater resources

| INDICATORE EUROSTAT                            | DESCRIZIONE                                                                                                                                                                                          | METODO DI CALCOLO                                                                              |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1 Precipitation (P)                            | Precipitazioni (sul territorio)                                                                                                                                                                      | Diretto (dalla rete dei dati meteo sul territorio)                                             |
| 2 Actual evapotranspiration (ETA) (2)          | Evapotraspirazione reale                                                                                                                                                                             | Diretto (dalla rete dei dati meteo sul territorio)                                             |
| 3 Internal Flow                                | Volume acque superficiali e sotterranee generate da P (1) (corrisponde alla Precipitazione efficace P – ETA);                                                                                        | Indiretto (Pe = P (1) – ETA (2))                                                               |
| 4 Actual External inflow                       | Volume di acque superficiali e sotterranee che provengono da TERRITORI LIMITROFI;                                                                                                                    | Diretto (Dalla rete di stazioni Idrografiche)                                                  |
| 5 Total Actual outflow                         | Volume di acque sup. e sotterranee che defluiscono al mare e nei territori limitrofi                                                                                                                 | A - Diretto (Dalla rete di stazioni Idrografiche) B - Indiretto (Dal modello idrologico 'CN'); |
| Into the sea; Into neigbouring territories;    | Porzione di (5) che defluisce in mare; Porzione di (5) che defluisce nei territori adiacenti;                                                                                                        |                                                                                                |
| 6 Total freshwater resources                   | Volume totale delle risorse idriche (3)+(4)                                                                                                                                                          | Indiretto (Q tot=(3)+(4))                                                                      |
| 7 Recharge into the aquifer                    | Volume totale delle acque sotterranee che raggiungono l'acquifero (Infiltrazione efficace, Ie);                                                                                                      | A - Diretto (Dalle stazioni Idrografiche);<br>B - Indiretto (Dal modello idrologico 'CN');     |
| 8 Groundwater available for annual abstraction | Volume della ricarica (7) meno il deflusso medio necessario per gli obiettivi di qualità ecologica («tiene conto delle restrizioni ecologiche imposte per lo sfruttamento delle acque sotterranee»); | Indiretto : [Ricarica degli acquiferi (7) - 'deflusso<br>minimo vitale']                       |



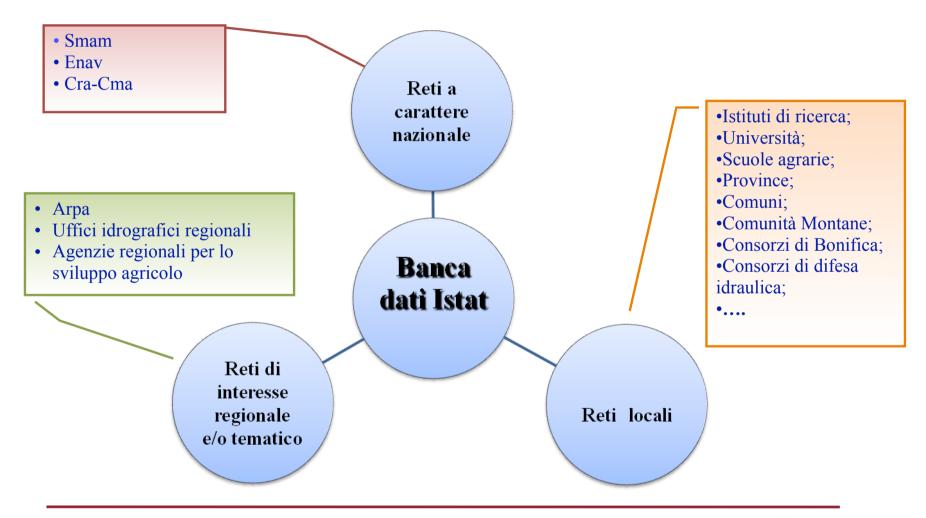
#### Istat e clima – la rilevazione

1926 – inizio raccolta dati meteorologici 2008 – Rilevazione dati meteoclimatici ed idrologici

Inserita nel Programma statistico nazionale

#### **OBIETTIVO 1**

#### **OBIETTIVO 2**


Banca dati Idro-Meteo Predisporre una

Banca dati relazionale-geografica con dati meteo-climatici ed idrologici a partire dal 1951

rilevati da tutte le reti di monitoraggio presenti sul territorio e caratterizzata da una copertura territoriale abbastanza omogenea. Sviluppare un ampio set di Indicatori climatici e sui deflussi dei corsi d'acqua

disponibili sia a livello nazionale che a scala geografica di maggiore dettaglio, attraverso l'adozione di domini spaziali di tipo amministrativo (regioni, province, Ato, bacini idrografici, comuni, ecc...). t





La complessità orografica del territorio richiede, per una stima realistica della variabilità climatica, un'alta densità di stazioni meteorologiche.

#### BANCA DATI IDRO-METEOROLOGICA

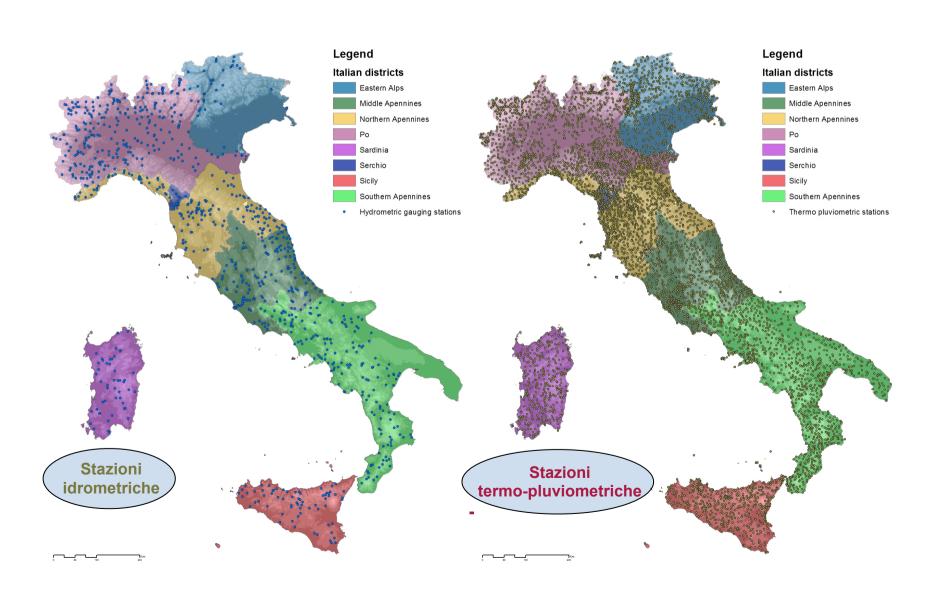
- ✓ Copertura temporale: 1951÷ 2010
- ✓ Le stazioni attualmente presenti in banca dati sono:
  - Precipitazione 5.889;
  - *Temperatura* 3.925;

per un totale di oltre 6.194 stazioni.

- *Portata* 612;
- *Altezza* idrometrica 323;

per un totale di oltre 935 stazioni.

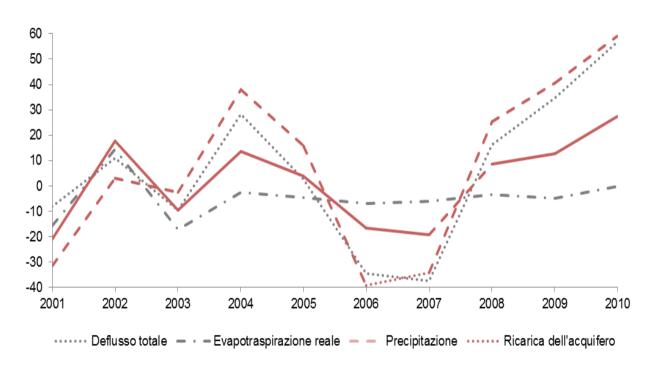







## Stazioni idrometriche e termo-pluviometriche

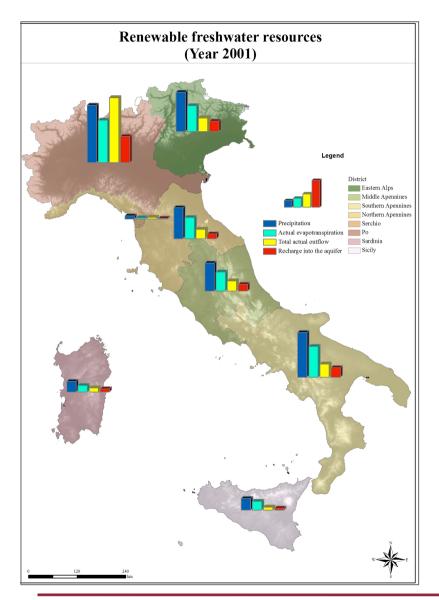
#### BANCA DATI IDROMETEOROLOGICA

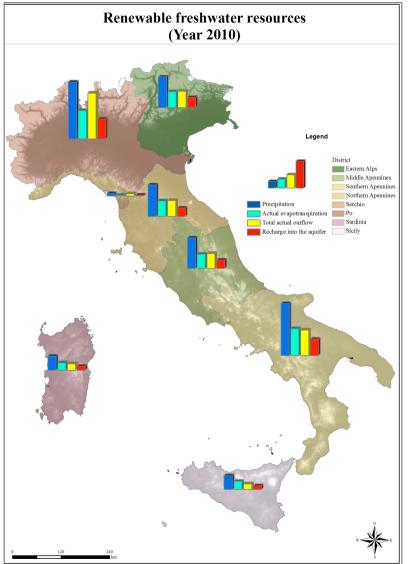

La copertura temporale delle stazioni censite dall'Istat copre il periodo che va dal 1951 al 2010 e conta circa 6.200 termo-pluviometriche ed oltre 900 idrometriche.



#### Risorse idriche rinnovabili

| Anni      | Precipitazione | Evapotraspirazione | Deflusso totale | Ricarica<br>dell'acquifero |  |  |
|-----------|----------------|--------------------|-----------------|----------------------------|--|--|
| 1971-2000 | 241.104        | 155.808            | 115.882         | 55.076                     |  |  |
| 2001-2010 | 245.457        | 148.590            | 122.884         | 59.193                     |  |  |


volumi in milioni di metri cubi




VARIAZIONI DI PRECIPITAZIONI, EVAPOTRASPIRAZIONE REALE, DEFLUSSI TOTALI E RICARICA DELL'ACQUIFERO DAL 2010 RISPETTO AL TRENTENNIO 1971-2000. Valori percentuali



## Risorse idriche rinnovabili per distretto idrografico







#### **Indicatori Eurostat – Freshwater resources**

#### Precipitazioni e Deflussi

## PRECIPITAZIONE - EVAPOTRASPIRAZIONE:

- •Per il calcolo della precipitazione e dell'evapotraspirazione reale si fa riferimento ai modelli di spazializzazione dei dati.
- •I dati di base sono quelli sperimentali di precipitazione e temperatura dell'aria rilevati dalle stazioni idro-meteorologiche presenti sul territorio nazionale.

#### **DEFLUSSO:**

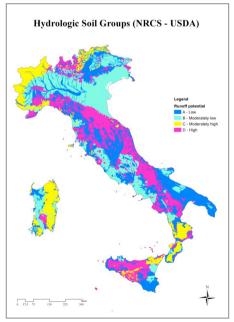
- •Per il calcolo del deflusso (portata in uscita dai bacini idrografici) si fa riferimento a:
  - •Dati diretti di portata (dove disponibili) misurati alle stazioni idrografiche gestite dalle autorità regionali;
  - •Dati indiretti derivati dall'applicazione di un modello idrologico (u.s. scs "curve number")

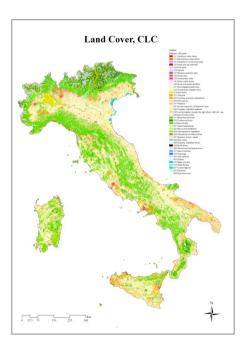


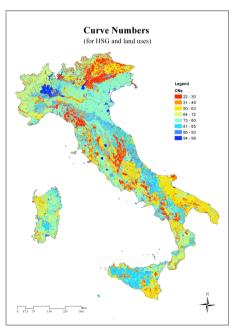
#### Variabili meteo-climatiche

- Data set giornaliero su grigliato regolare di precipitazioni e temperature, dal 1961 ad oggi con una risoluzione Lat/Long paria 0.14°/0.10° (circa 10 km);
- I dati di precipitazione ed evapotraspirazione potenziale (ETO stimata con Hargreaves-Samani con coefficienti calibrati), dal 1971 al 2010, sono stati aggregati mensilmente generando 12 layers informativi relativi al trentennio LTAA 1971-2000 e 120 al decennio 2001-2010 per ogni grandezza;
- L'Evapotraspirazione Reale è stata stimata per ogni unità statistica (bacino idrografico) tramite il bilancio di Thornthwaite-Mather considerando la capacità idrica disponibile (AWC), derivata dalla banca dati dei suoli italiani dell'Issds (Istituto dei suoli di Firenze) disponibile su grigliato regolare con risoluzione 1 km x 1 km circa.




#### **Deflusso totale**


Il deflusso totale si ottiene a partire da:


- a) dati rilevati dalle stazioni di monitoraggio idrometrico presenti alla foce dei singoli corsi d'acqua,
- b) attraverso l'applicazione del metodo del Curve Number che fornisce i valori di ruscellamento da cui dedurre l'infiltrazione efficace a partire dalle precipitazioni efficaci (P-ETreale) per i fiumi non monitorati .

Il parametro Curve Number è stato dedotto, per ogni bacino, pesando le aree corrispondenti ai 4 gruppi idrologici di suolo (A, B, C and D), identificati dall'intersezione dell'uso del suolo (Corine Land Cover, 2006) con i complessi idrogeologici definiti dall'ISPRA.



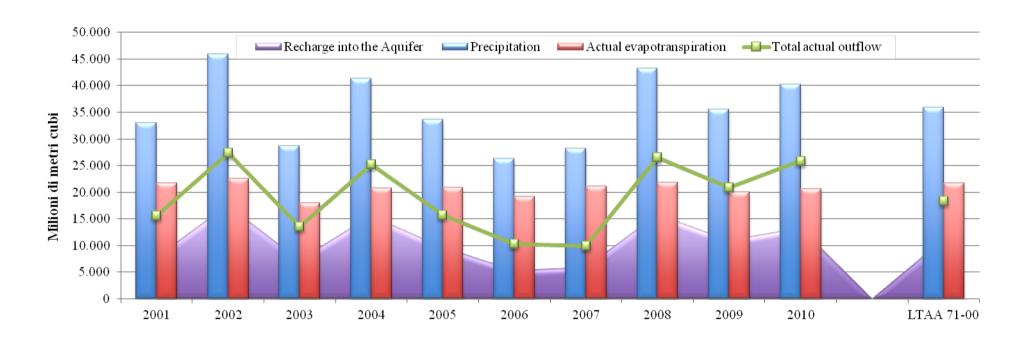






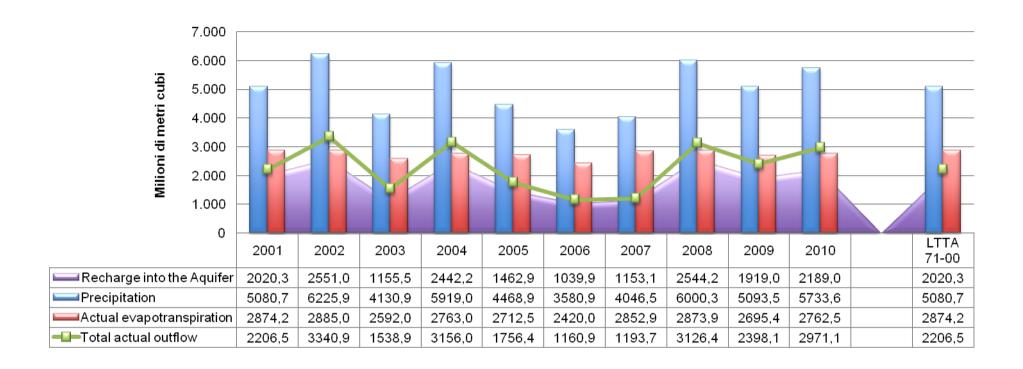
#### Ricarica dell'acquifero




L'analisi dei deflussi giornalieri e mensili ci ha permesso di scomporre l'idrogramma nelle componenti ruscellamento e flusso di base che rappresenta la ricarica nella falda acquifera.

Per i fiumi per i quali non avevamo stazioni idrometriche, i volumi sono stati stimati con il metodo del Curve Number, che permette la stima, per ciascun bacino idrografico, del run-off e della ricarica nella falda acquifera.

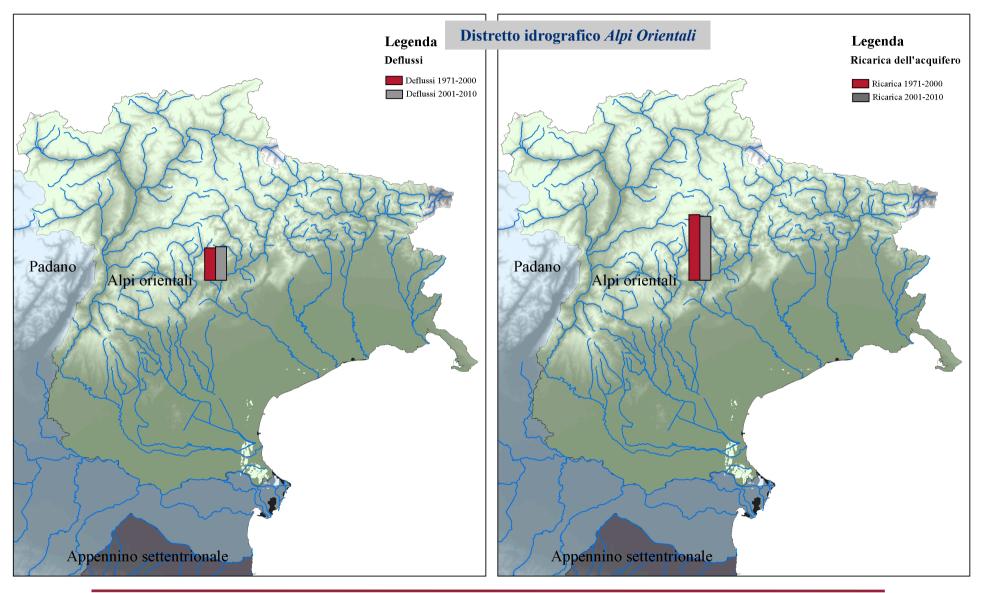



## Risorse idriche rinnovabili

#### **Distretto Alpi Orientali**

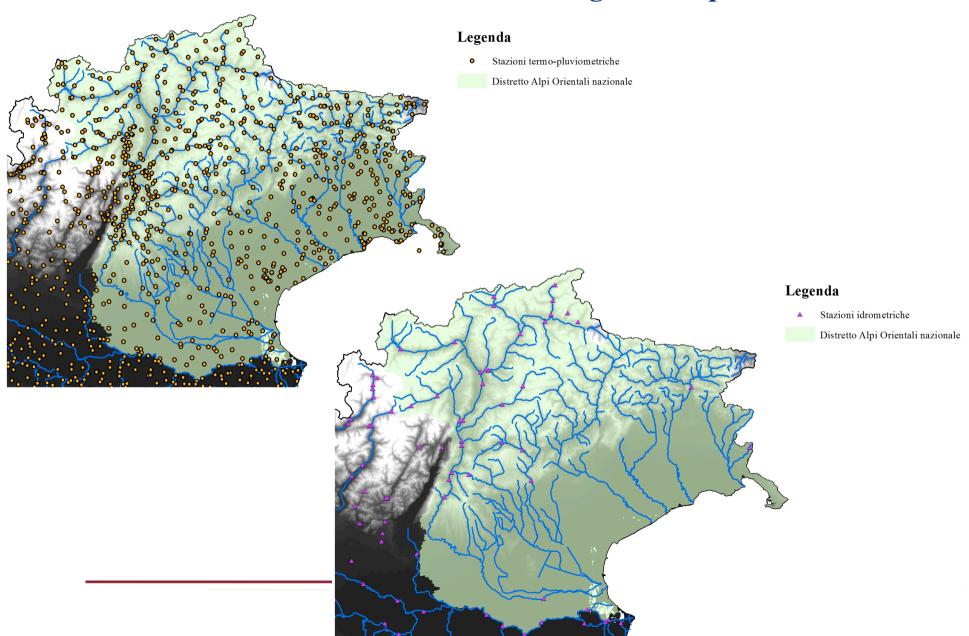


| RIVER                 |                | REGIONAL ENVIRONMENTAL D                       | ATA                |        |        | <del>1-1-</del> |        |        |        |        |        |        |        |            |
|-----------------------|----------------|------------------------------------------------|--------------------|--------|--------|-----------------|--------|--------|--------|--------|--------|--------|--------|------------|
| BASIN                 |                | Country IT Ital                                | У                  |        |        |                 |        |        |        |        |        |        |        |            |
| DISTRICT              |                |                                                |                    |        |        |                 |        |        |        |        |        |        |        |            |
| / SUBUNIT             | rbd <b>src</b> |                                                | UNIT               | 2010   | 2009   | 2008            | 2007   | 2006   | 2005   | 2004   | 2003   | 2002   | 2001   | LTAA 71-00 |
|                       | ITA FR_1       | - Precipitation (1)                            | 10 <sup>6</sup> m³ | 40.246 | 35.581 | 43.241          | 28.200 | 26.225 | 33.668 | 41.318 | 28.668 | 45.869 | 33.020 | 35.955     |
|                       | ITA FR_2       | - Actual evapotranspiration (2)                | 10 <sup>6</sup> m³ | 20.673 | 20.015 | 21.784          | 21.144 | 19.228 | 20.842 | 20.738 | 17.921 | 22.501 | 21.735 | 21.740     |
|                       | ITA FR_3       | Internal Flow (1-2)                            | 10 <sup>6</sup> m³ | 19.573 | 15.566 | 21.457          | 7.056  | 6.997  | 12.826 | 20.580 | 10.747 | 23.368 | 11.284 | 14.215     |
| ITA<br>Eastern Alps - | ITA FR_4       | - Actual external inflow (3)                   | 10 <sup>6</sup> m³ | 6.294  | 5.255  | 5.080           | 2.857  | 3.248  | 2.843  | 4.576  | 2.791  | 3.996  | 4.265  | 4.116      |
|                       | ITA FR_6       | Total renewable freshwater resources (1-2+     | <b>·3)</b> 106 m³  | 25.868 | 20.821 | 26.536          | 9.912  | 10.246 | 15.669 | 25.156 | 13.538 | 27.364 | 15.549 | 18.331     |
|                       | ITA FR_5       | - Total actual outflow                         | 10 <sup>6</sup> m³ | 25.868 | 20.821 | 26.536          | 9.912  | 10.246 | 15.669 | 25.156 | 13.538 | 27.364 | 15.549 | 18.329     |
|                       | ITA FR_7       | - Recharge into the Aquifer                    | 10 <sup>6</sup> m³ | 13.250 | 10.919 | 15.776          | 5.865  | 5.319  | 9.681  | 15.495 | 7.270  | 17.491 | 7.755  | 11.189     |
|                       | ITA FR_9       | - Groundwater available for annual abstraction | 10 <sup>6</sup> m³ | 10.600 | 8.735  | 12.620          | 4.692  | 4.255  | 7.745  | 12.396 | 5.816  | 13.993 | 6.204  | 8.951      |


#### Un esempio: il fiume Tagliamento






### Precipitazione e deflusso medio

Trentennio 1971-2000 e Decennio 2001-2010. Volumi in milioni di metri cubi



## Le stazioni termo-pluviometriche e idrometriche

## Distretto idrografico Alpi Orientali



## La mappa dei bacini

Distretto idrografico Alpi Orientali Legenda **DISTRETTO** XX ALPI ORIENTALI Bacini idrografici altri bacini Bacini Alpi Orientali ADIGE NORD ADIGE NORD ABIGE CH fuori confine ADIGE SUD ADIGE\_CH fuori confine BACINO SCOLANTE LAGUNA VENETA ADDA\_2 furori confine **BRENTA** PIAVE CANALE BIANCO ISONZO SONZO FUORI CONFINE ISONZO FUORI CONFINE TAGLIAMENTO LIVENZA LIVENZA OSPO PIAVE ROSANDRA PO NORD EST SILE SILE ADIGE SUD BRENTA **TAGLIAMENTO** BACINO SCOLANTE LAGUNA VENETA CANALE BIANCO PO SUD EST PO FOCE



#### Estrazione dal database Istat dei dati di bilancio

#### Bacini del Distretto Alpi Orientali

| - 4 | Α                             | В     | С       | D      | Е      | F      | G                            | Н      | 1      | J                              | K = |
|-----|-------------------------------|-------|---------|--------|--------|--------|------------------------------|--------|--------|--------------------------------|-----|
| 1   | Bacino                        | Anno  | Р       | ETR    | P-E    | R+I    | stazione di misura alla foce | R      | I      | deflussi al netto delll'estero | Â   |
| 2   | ADIGE                         | 71-00 | 10713,1 | 6082,3 | 4630,9 | 6020,0 | sì                           | 2082,7 | 2368,3 | 4451,0                         |     |
| 3   | BACINO SCOLANTE LAGUNA VENETA | 71-00 | 1798,1  | 1284,3 | 513,8  | 513,8  | no                           | 114,9  | 398,9  |                                |     |
| 4   | BRENTA                        | 71-00 | 5639,1  | 3854,9 | 1784,2 | 1858,4 | no                           | 118,2  | 1740,2 |                                | ≡   |
| 5   | CANALE BIANCO                 | 71-00 | 2240,0  | 1708,5 | 531,5  | 550,4  | no                           | 106,8  | 443,6  |                                |     |
| 6   | ISONZO                        | 71-00 | 1654,0  | 1047,6 | 606,4  | 606,4  | no                           | 75,1   | 531,3  |                                |     |
| 7   | LIVENZA                       | 71-00 | 3717,7  | 2076,6 | 1641,0 | 1641,0 | no                           | 195,4  | 1445,6 |                                |     |
| 8   | PIAVE                         | 71-00 | 4265,5  | 2228,2 | 2037,3 | 2124,0 | no                           | 90,9   | 2033,0 |                                |     |
| 9   | SILE                          | 71-00 | 846,5   | 583,2  | 263,3  | 263,3  | no                           | 55,7   | 207,6  |                                |     |
| 10  | TAGLIAMENTO                   | 71-00 | 5080,7  | 2874,2 | 2206,5 | 2206,5 | no                           | 186,2  | 2020,3 |                                |     |
| 11  | ADIGE                         | 2001  | 9186,4  | 6134,2 | 3052,2 | 4711,0 | sì                           | 1423,4 | 2012,4 | 3435,8                         |     |
| 12  | BACINO SCOLANTE LAGUNA VENETA | 2001  | 1640,9  | 1283,3 | 357,7  | 2924,2 | no                           | 155,5  | 202,1  |                                |     |
| 13  | BRENTA                        | 2001  | 5097,6  | 3816,1 | 1281,5 | 8913,7 | no                           | 230,9  | 914,1  |                                |     |
| 14  | CANALE BIANCO                 | 2001  | 2192,5  | 1640,1 | 552,3  | 3832,6 | no                           | 213,5  | 294,8  |                                |     |
| 15  | ISONZO                        | 2001  | 1708,3  | 999,0  | 709,4  | 2707,3 | no                           | 304,9  | 404,5  |                                |     |
| 16  | LIVENZA                       | 2001  | 3587,1  | 2128,1 | 1459,0 | 5715,1 | no                           | 379,3  | 1079,7 |                                |     |
| 17  | PIAVE                         | 2001  | 4057,6  | 2238,9 | 1818,7 | 6296,5 | no                           | 253,2  | 1362,2 |                                |     |
| 18  | SILE                          | 2001  | 884,2   | 625,1  | 259,1  | 1509,3 | no                           | 113,7  | 145,4  |                                |     |
| 19  | TAGLIAMENTO                   | 2001  | 5080,7  | 2874,2 | 2206,5 | 2206,5 | no                           | 186,2  | 2020,3 |                                |     |
| 20  | ADIGE                         | 2002  | 12923,3 | 6274,3 | 6649,1 | 6627,3 | sì                           | 2036,5 | 2879,2 | 4915,7                         |     |
| 21  | BACINO SCOLANTE LAGUNA VENETA | 2002  | 2379,8  | 1403,9 | 976,0  | 976,0  | no                           | 301,4  | 674,6  |                                |     |
| 22  | BRENTA                        | 2002  | 7584,8  | 4066,1 | 3518,6 | 4296,7 | no                           | 621,0  | 3675,7 |                                |     |
| 23  | CANALE BIANCO                 | 2002  | 3004,7  | 1896,8 | 1107,9 | 1315,0 | no                           | 336,7  | 978,3  |                                |     |
| 24  | ISONZO                        | 2002  | 2211,9  | 1058,4 | 1153,5 | 1153,5 | no                           | 399,8  | 753,7  |                                |     |
| 25  | LIVENZA                       | 2002  | 4864,1  | 2091,8 | 2772,3 | 2772,3 | no                           | 704,0  | 2068,3 |                                |     |
| 26  | PIAVE                         | 2002  | 5494,2  | 2206,6 | 3287,6 | 4035,8 | no                           | 501,2  | 3534,6 |                                |     |
| 27  | SILE                          | 2002  | 1179,9  | 617,8  | 562,1  | 562,1  | no                           | 186,8  | 375,3  |                                |     |
| 28  | TAGLIAMENTO                   | 2002  | 6225,9  | 2885,0 | 3340,9 | 3340,9 | no                           | 789,9  | 2551,0 |                                |     |
| 29  | ADIGE                         | 2003  | 8402,9  | 5566,9 | 2835,9 | 4309,2 | sì                           | 1316,2 | 1860,8 | 3177,0                         |     |
|     | DAGING COOLANTE LAGUNA VENETA | 2000  |         |        |        |        | 1                            |        |        |                                |     |



## Prossimi sviluppi



- ✓ Aggiornamento degli indicatori
- ✓ Maggior dettaglio territoriale per le variabili meteoclimatiche
- ✓ Evoluzione delle metodologie di calcolo
- ✓ Collaborazione con CRA CMA, ISPRA, Regioni (Servizi idrografici, Arpa)





